Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806877

RESUMEN

Coumarins are phytochemicals occurring in the plant kingdom, which biosynthesis is induced under various stress factors. They belong to the wide class of specialized metabolites well known for their beneficial properties. Due to their high and wide biological activities, coumarins are important not only for the survival of plants in changing environmental conditions, but are of great importance in the pharmaceutical industry and are an active source for drug development. The identification of coumarins from natural sources has been reported for different plant species including a model plant Arabidopsis thaliana. In our previous work, we demonstrated a presence of naturally occurring intraspecies variation in the concentrations of scopoletin and its glycoside, scopolin, the major coumarins accumulating in Arabidopsis roots. Here, we expanded this work by examining a larger group of 28 Arabidopsis natural populations (called accessions) and by extracting and analysing coumarins from two different types of tissues-roots and leaves. In the current work, by quantifying the coumarin content in plant extracts with ultra-high-performance liquid chromatography coupled with a mass spectrometry analysis (UHPLC-MS), we detected a significant natural variation in the content of simple coumarins like scopoletin, umbelliferone and esculetin together with their glycosides: scopolin, skimmin and esculin, respectively. Increasing our knowledge of coumarin accumulation in Arabidopsis natural populations, might be beneficial for the future discovery of physiological mechanisms of action of various alleles involved in their biosynthesis. A better understanding of biosynthetic pathways of biologically active compounds is the prerequisite step in undertaking a metabolic engineering research.


Asunto(s)
Arabidopsis/metabolismo , Cumarinas/análisis , Espectrometría de Masas , Raíces de Plantas/metabolismo , Cromatografía Líquida de Alta Presión , Cumarinas/metabolismo
2.
Appl Microbiol Biotechnol ; 104(10): 4547-4561, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32215712

RESUMEN

"The Great Five" (GF) is an artificial bacterial consortium developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. To investigate the commercialization potential of the GF, we developed liquid and powder formulations of the consortium and of each of the comprising strains (Serratia plymuthica strain A294, Enterobacter amnigenus strain A167, Rahnella aquatilis strain H145, Serratia rubidaea strain H440, and S. rubidaea strain H469). To form powders, the cells were lyophilized using a newly developed lyoprotectant: Reagent PS. The shelf life of the formulations stored at 8 and 22 °C was monitored for a period of 12 months. The longest shelf life was obtained for formulations stored at 8 °C; however, the viability of all formulations was negatively affected at 22 °C. For the consortium, a 2.5 log10 cfu (colony forming units) drop in cell number was recorded for the liquid formulation after 6 months, while in case of powders, the drop remained below 1 log10 cfu following 12 months. The ability of the powder formulations to preserve biocontrol activity of the consortium was tested on potato tubers treated with the formulations and a mixture of the soft rot pathogens. The inoculated tubers were stored for 6 months at 8 °C to mimic commercial storage conditions. Soft rot severity and incidence on potato tubers treated with formulations were significantly reduced (62-75% and 48-61%, respectively) in comparison to positive control with pathogens alone. The potential use of the newly developed formulations of "The Great Five" for the biocontrol of soft rot is discussed. KEY POINTS : • An innovative reagent to protect bacterial cells during lyophilization was developed. • Powder formulations of "The Great Five" prolonged its shelf life. • The powder-formulated "The Great Five" was active against soft rot bacteria on potato tubers.


Asunto(s)
Antibiosis , Dickeya/fisiología , Almacenamiento de Alimentos/métodos , Consorcios Microbianos , Pectobacterium/fisiología , Solanum tuberosum/microbiología , Agentes de Control Biológico , Recuento de Colonia Microbiana , Dickeya/patogenicidad , Pectobacterium/patogenicidad
3.
Plant Dis ; 103(6): 1374-1382, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30908126

RESUMEN

Possibilities to protect potato tubers from rotting caused by Soft Rot Pectobacteriaceae (SRP) under disease favoring conditions were investigated using compatible mixtures of bacterial antagonists and tested with a newly developed stepwise efficacy-based screening protocol. Twenty-two bacterial antagonists were evaluated against a combination of five Pectobacterium and Dickeya strains representing species and subspecies most often associated with potato soft rot in Europe. To enable potential synergistic activity, the antagonists were initially tested against the combination of pathogens in 15 random mixtures containing up to 5 antagonists each. Three mixtures (M2, M4, and M14) out of 15 tested reduced tuber tissue maceration due to soft rot. The individual antagonists derived from M2, M4, and M14 mixtures were tested on potato slices and whole tuber injection assays. These five strains (S. plymuthica strain A294, E. amnigenus strain A167, R. aquatilis strain H145, S. rubidaea strain H440, and S. rubidaea strain H469) were combined to develop a tailored biological control mixture against potato soft rot. The new mixture, designated the Great Five (GF), was tested on seed potato tubers vacuum infiltrated with antagonists and subsequently with the combination of five SRP pathogens. In these experiments, the GF mixture provided stable protection of inoculated potato tubers, reducing soft rot by 46% (P = 0.0016) under high disease pressure conditions. The A294, A167, H145, H440, and H469 antagonists were characterized for features important for viable commercial applications including growth at different temperatures, resistance to antibiotics, and potential toxicity toward Caenorhabditis elegans. The implications for control of soft rot caused by SRP with the use of the GF mixture of antagonists are discussed.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Gammaproteobacteria , Interacciones Microbianas , Enfermedades de las Plantas , Tubérculos de la Planta , Solanum tuberosum , Agentes de Control Biológico , Europa (Continente) , Gammaproteobacteria/fisiología , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Tubérculos de la Planta/microbiología , Solanum tuberosum/microbiología
4.
PLoS One ; 10(3): e0119812, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803051

RESUMEN

Pectinolytic Pectobacterium spp. and Dickeya spp. are necrotrophic bacterial pathogens of many important crops, including potato, worldwide. This study reports on the isolation and characterization of broad host lytic bacteriophages able to infect the dominant Pectobacterium spp. and Dickeya spp. affecting potato in Europe viz. Pectobacterium carotovorum subsp. carotovorum (Pcc), P. wasabiae (Pwa) and Dickeya solani (Dso) with the objective to assess their potential as biological disease control agents. Two lytic bacteriophages infecting stains of Pcc, Pwa and Dso were isolated from potato samples collected from two potato fields in central Poland. The ΦPD10.3 and ΦPD23.1 phages have morphology similar to other members of the Myoviridae family and the Caudovirales order, with a head diameter of 85 and 86 nm and length of tails of 117 and 121 nm, respectively. They were characterized for optimal multiplicity of infection, the rate of adsorption to the Pcc, Pwa and Dso cells, the latent period and the burst size. The phages were genotypically characterized with RAPD-PCR and RFLP techniques. The structural proteomes of both phages were obtained by fractionation of phage proteins by SDS-PAGE. Phage protein identification was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Pulsed-field gel electrophoresis (PFGE), genome sequencing and comparative genome analysis were used to gain knowledge of the length, organization and function of the ΦPD10.3 and ΦPD23.1 genomes. The potential use of ΦPD10.3 and ΦPD23.1 phages for the biocontrol of Pectobacterium spp. and Dickeya spp. infections in potato is discussed.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Enterobacteriaceae/virología , Pectobacterium/virología , Proteómica , Adsorción , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/virología , Solanum tuberosum/microbiología , Solanum tuberosum/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA