Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 9(8): e103114, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25101679

RESUMEN

Exendin-4 is a glucagon-like receptor 1 agonist clinically used against type 2 diabetes that has also shown neuroprotective effects in experimental stroke models. However, while the neuroprotective efficacy of Exendin-4 has been thoroughly investigated if the pharmacological treatment starts before stroke, the therapeutic potential of the Exendin-4 if the treatment starts acutely after stroke has not been clearly determined. Further, a comparison of the neuroprotective efficacy in normal and aged diabetic mice has not been performed. Finally, the cellular mechanisms behind the efficacy of Exendin-4 have been only partially studied. The main objective of this study was to determine the neuroprotective efficacy of Exendin-4 in normal and aged type 2 diabetic mice if the treatment started after stroke in a clinically relevant setting. Furthermore we characterized the Exendin-4 effects on stroke-induced neuroinflammation. Two-month-old healthy and 14-month-old type 2 diabetic/obese mice were subjected to middle cerebral artery occlusion. 5 or 50 µg/kg Exendin-4 was administered intraperitoneally at 1.5, 3 or 4.5 hours thereafter. The treatment was continued (0.2 µg/kg/day) for 1 week. The neuroprotective efficacy was assessed by stroke volume measurement and stereological counting of NeuN-positive neurons. Neuroinflammation was determined by gene expression analysis of M1/M2 microglia subtypes and pro-inflammatory cytokines. We show neuroprotective efficacy of 50 µg/kg Exendin-4 at 1.5 and 3 hours after stroke in both young healthy and aged diabetic/obese mice. The 5 µg/kg dose was neuroprotective at 1.5 hour only. Proinflammatory markers and M1 phenotype were not impacted by Exendin-4 treatment while M2 markers were significantly up regulated. Our results support the use of Exendin-4 to reduce stroke-damage in the prehospital/early hospitalization setting irrespectively of age/diabetes. The results indicate the polarization of microglia/macrophages towards the M2 reparative phenotype as a potential mechanism of neuroprotection.


Asunto(s)
Isquemia Encefálica/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microglía/patología , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Ponzoñas/farmacología , Animales , Biomarcadores/metabolismo , Isquemia Encefálica/patología , Diabetes Mellitus Experimental , Evaluación Preclínica de Medicamentos , Exenatida , Perfilación de la Expresión Génica , Infarto de la Arteria Cerebral Media , Masculino , Ratones Endogámicos C57BL , Microglía/metabolismo , Fenotipo , Accidente Cerebrovascular/patología , Factores de Tiempo
2.
Nutr Metab (Lond) ; 9: 11, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22333133

RESUMEN

BACKGROUND: Green tea was suggested as a therapeutic agent for the treatment of diabetes more than 70 years ago, but the mechanisms behind its antidiabetic effect remains elusive. In this work, we address this issue by feeding a green tea extract (TEAVIGO™) with a high content of epigallocatechin gallate (EGCG) or the thiazolidinedione PPAR-γ agonist rosiglitazone, as positive control, to db/db mice, an animal model for diabetes. METHODS: Young (7 week-old) db/db mice were randomized and assigned to receive diets supplemented with or without EGCG or rosiglitazone for 10 weeks. Fasting blood glucose, body weight and food intake was measured along the treatment. Glucose and insulin levels were determined during an oral glucose tolerance test after 10 weeks of treatment. Pancreata were sampled at the end of the study for blinded histomorphometric analysis. Islets were isolated and their mRNA expression analyzed by quantitative RT-PCR. RESULTS: The results show that, in db/db mice, EGCG improves glucose tolerance and increases glucose-stimulated insulin secretion. EGCG supplementation reduces the number of pathologically changed islets of Langerhans, increases the number and the size of islets, and heightens pancreatic endocrine area. These effects occurred in parallel with a reduction in islet endoplasmic reticulum stress markers, possibly linked to the antioxidative capacity of EGCG. CONCLUSIONS: This study shows that the green tea extract EGCG markedly preserves islet structure and enhances glucose tolerance in genetically diabetic mice. Dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes.

3.
Clin Sci (Lond) ; 122(10): 473-83, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22150224

RESUMEN

Diabetes is a strong risk factor for premature and severe stroke. The GLP-1R (glucagon-like peptide-1 receptor) agonist Ex-4 (exendin-4) is a drug for the treatment of T2D (Type 2 diabetes) that may also have neuroprotective effects. The aim of the present study was to determine the efficacy of Ex-4 against stroke in diabetes by using a diabetic animal model, a drug administration paradigm and a dose that mimics a diabetic patient on Ex-4 therapy. Furthermore, we investigated inflammation and neurogenesis as potential cellular mechanisms underlying the Ex-4 efficacy. A total of seven 9-month-old Type 2 diabetic Goto­Kakizaki rats were treated peripherally for 4 weeks with Ex-4 at 0.1, 1 or 5 µg/kg of body weight before inducing stroke by transient middle cerebral artery occlusion and for 2­4 weeks thereafter. The severity of ischaemic damage was measured by evaluation of stroke volume and by stereological counting of neurons in the striatum and cortex. We also quantitatively evaluated stroke-induced inflammation, stem cell proliferation and neurogenesis. We show a profound anti-stroke efficacy of the clinical dose of Ex-4 in diabetic rats, an arrested microglia infiltration and an increase of stroke-induced neural stem cell proliferation and neuroblast formation, while stroke-induced neurogenesis was not affected by Ex-4. The results show a pronounced anti-stroke, neuroprotective and anti-inflammatory effect of peripheral and chronic Ex-4 treatment in middle-aged diabetic animals in a preclinical setting that has the potential to mimic the clinical treatment. Our results should provide strong impetus to further investigate GLP-1R agonists for their neuroprotective action in diabetes, and for their possible use as anti-stroke medication in non-diabetic conditions.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Péptidos/uso terapéutico , Receptores de Glucagón/agonistas , Accidente Cerebrovascular/tratamiento farmacológico , Ponzoñas/uso terapéutico , Animales , Isquemia Encefálica/patología , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Evaluación Preclínica de Medicamentos , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Hiperglucemia/tratamiento farmacológico , Masculino , Microglía/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Ratas , Volumen Sistólico/efectos de los fármacos
4.
Int J Food Sci Nutr ; 57(7-8): 512-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17162329

RESUMEN

A randomized, placebo-controlled, double-blind clinical study was performed to investigate the dose-dependent response of serum cholesterol after consuming an ultra-heat-treated milk containing a soy protein preparation. Eighty hypercholesterolemic subjects were assigned to one of four study groups receiving 12.5 or 25 g soy protein (active treatment) or casein (placebo) daily over a period of 4 weeks. The trial substances were provided as ready-made, ultra-heated milk preparations. Before and after the treatment, serum concentrations of total, low-density lipoprotein, and high-density lipoprotein cholesterol were determined. Unexpectedly, at the end of the study, low-density lipoprotein cholesterol concentrations were significantly increased compared with baseline in all study groups. The magnitude of this increase (17-19%) was similar in all active and placebo study groups. Soy protein supplements previously shown to be effective in reducing serum cholesterol had in this study no such lipid-lowering effect after ultra heat treatment.


Asunto(s)
Colesterol/sangre , Manipulación de Alimentos/métodos , Calor/efectos adversos , Hipercolesterolemia/dietoterapia , Proteínas de Soja/metabolismo , Adulto , Anciano , Bebidas , Caseínas/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Fitosteroles/metabolismo , Glycine max , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA