RESUMEN
Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.
Asunto(s)
ADN Antiguo/análisis , Genoma Humano/genética , Hombre de Neandertal/genética , Alelos , Américas/etnología , Animales , Arqueología , Bulgaria/etnología , Cuevas , Asia Oriental/etnología , Femenino , Historia Antigua , Humanos , Masculino , FilogeniaRESUMEN
Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.
Asunto(s)
Migración Humana/historia , Inuk/clasificación , Inuk/genética , Filogenia , Filogeografía , África , Alaska , Alelos , Regiones Árticas , Asia Sudoriental , Canadá , Europa (Continente) , Genoma Humano/genética , Haplotipos , Historia Antigua , Humanos , Análisis de Componente Principal , Siberia/etnologíaRESUMEN
The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.
Asunto(s)
Pueblo Asiatico/genética , Genoma Humano/genética , Genómica , Migración Humana/historia , Nativos de Hawái y Otras Islas del Pacífico/genética , Filogenia , Femenino , Genética de Población , Historia Antigua , Humanos , Masculino , Nueva Guinea/etnología , Polinesia/etnología , Tonga , VanuatuRESUMEN
Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Filogenia , Grupos Raciales/genética , Animales , Australia , Población Negra/genética , Conjuntos de Datos como Asunto , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de TiempoRESUMEN
Whole-genome studies have documented that most Native American ancestry stems from a single population that diversified within the continent more than twelve thousand years ago. However, this shared ancestry hides a more complex history whereby at least four distinct streams of Eurasian migration have contributed to present-day and prehistoric Native American populations. Whole genome studies enhanced by technological breakthroughs in ancient DNA now provide evidence of a sequence of events involving initial migrations from a structured Northeast Asian source population with differential relatedness to present-day Australasian populations, followed by a divergence into northern and southern Native American lineages. During the Holocene, new migrations from Asia introduced the Saqqaq/Dorset Paleoeskimo population to the North American Arctic â¼4500 years ago, ancestry that is potentially connected with ancestry found in Athabaskan-speakers today. This was then followed by a major new population turnover in the high Arctic involving Thule-related peoples who are the ancestors of present-day Inuit. We highlight several open questions that could be addressed through future genomic research.
Asunto(s)
Genoma Humano , Genómica , Migración Humana , Indígenas Norteamericanos/genética , Américas , Regiones Árticas , Asia , Historia Antigua , Humanos , Indígenas Norteamericanos/historia , América del NorteRESUMEN
Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.
Asunto(s)
Cubierta de Hielo , Población Blanca/genética , Población Blanca/historia , Animales , Evolución Biológica , ADN/análisis , ADN/genética , ADN/aislamiento & purificación , Europa (Continente) , Femenino , Efecto Fundador , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Masculino , Medio Oriente , Hombre de Neandertal/genética , Filogenia , Dinámica Poblacional , Selección Genética , Análisis de Secuencia de ADN , Factores de TiempoRESUMEN
The consequences of the Neolithic transition in Europe--one of the most important cultural changes in human prehistory--is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter-gatherers. The proportion of hunter-gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people.
Asunto(s)
ADN/genética , Agricultores/historia , Genoma , Pool de Genes , Geografía , Historia Antigua , Humanos , Dinámica Poblacional , Análisis de Componente Principal , Análisis de Secuencia de ADN , EspañaRESUMEN
The European Neolithization process started around 12 000 years ago in the Near East. The introduction of agriculture spread north and west throughout Europe and a key question has been if this was brought about by migrating individuals, by an exchange of ideas or a by a mixture of these. The earliest farming evidence in Scandinavia is found within the Funnel Beaker Culture complex (Trichterbecherkultur, TRB) which represents the northernmost extension of Neolithic farmers in Europe. The TRB coexisted for almost a millennium with hunter-gatherers of the Pitted Ware Cultural complex (PWC). If migration was a substantial part of the Neolithization, even the northerly TRB community would display a closer genetic affinity to other farmer populations than to hunter-gatherer populations. We deep-sequenced the mitochondrial hypervariable region 1 from seven farmers (six TRB and one Battle Axe complex, BAC) and 13 hunter-gatherers (PWC) and authenticated the sequences using postmortem DNA damage patterns. A comparison with 124 previously published sequences from prehistoric Europe shows that the TRB individuals share a close affinity to Central European farmer populations, and that they are distinct from hunter-gatherer groups, including the geographically close and partially contemporary PWC that show a close affinity to the European Mesolithic hunter-gatherers.
Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Migración Humana/historia , Agricultura/historia , Secuencia de Bases , Biología Computacional , Cartilla de ADN/genética , ADN Mitocondrial/historia , Flujo Génico , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Historia Antigua , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Dinámica Poblacional , Reacción en Cadena en Tiempo Real de la Polimerasa , SueciaRESUMEN
The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.
Asunto(s)
Genoma Humano/genética , Migración Humana , Inuk/genética , Alaska/etnología , Regiones Árticas/etnología , Secuencia de Bases , Huesos , Canadá/etnología , ADN Mitocondrial/genética , Groenlandia/etnología , Cabello , Historia Antigua , Humanos , Inuk/etnología , Inuk/historia , Datos de Secuencia Molecular , Siberia/etnología , Sobrevivientes/historia , DienteRESUMEN
Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer-related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups.
Asunto(s)
Agricultura/historia , ADN Mitocondrial/genética , Variación Genética , Genoma Humano , Población Blanca/genética , ADN Mitocondrial/historia , Genómica , Historia Antigua , Humanos , Países Escandinavos y Nórdicos , Población Blanca/historiaRESUMEN
Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.
Asunto(s)
Genoma Humano/genética , Indígenas Norteamericanos/genética , Filogenia , Arqueología , Asia/etnología , Huesos , Entierro , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración/historia , Europa (Continente)/etnología , Flujo Génico/genética , Haplotipos/genética , Historia Antigua , Humanos , Lactante , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Montana , Dinámica Poblacional , Datación RadiométricaRESUMEN
Ancestral relationships between populations separated by time represent an often neglected dimension in population genetics, a field which historically has focused on analysis of spatially distributed samples from the same point in time. Models are usually straightforward when two time-separated populations are assumed to be completely isolated from all other populations. However, this is usually an unrealistically stringent assumption when there is gene flow with other populations. Here, we investigate continuity in the presence of gene flow from unknown populations. This setup allows a more nuanced treatment of questions regarding population continuity in terms of "level of contribution" from a particular ancient population to a more recent population. We propose a statistical framework which makes use of a biallelic marker sampled at two different points in time to assess population contribution, and present two different interpretations of the concept. We apply the approach to published data from a prehistoric human population in Scandinavia (Malmström H, Gilbert MTP, Thomas MG, Brandström M, Storå J, Molnar P, Andersen PK, Bendixen C, Holmlund G, Götherström A, et al. 2009. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians. Curr Biol. 19:1758-1762) and Pleistocene woolly mammoth (Barnes I, Shapiro B, Lister A, Kuznetsova T, Sher A, Guthrie D, Thomas MG. 2007. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr Biol. 17:1072-1075; Debruyne R, Chu G, King CE, Bos K, Kuch M, Schwarz C, Szpak P, Gröcke DR, Matheus P, Zazula G, et al. 2008. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Curr Biol. 18:1320-1326).
Asunto(s)
Evolución Molecular , Genética de Población , Modelos Genéticos , Animales , Simulación por Computador , ADN Mitocondrial/genética , ADN Mitocondrial/historia , Fósiles , Flujo Génico , Frecuencia de los Genes , Flujo Genético , Historia Antigua , Humanos , Mamuts/genética , Países Escandinavos y Nórdicos , SiberiaRESUMEN
The farming way of life originated in the Near East some 11,000 years ago and had reached most of the European continent 5000 years later. However, the impact of the agricultural revolution on demography and patterns of genomic variation in Europe remains unknown. We obtained 249 million base pairs of genomic DNA from ~5000-year-old remains of three hunter-gatherers and one farmer excavated in Scandinavia and find that the farmer is genetically most similar to extant southern Europeans, contrasting sharply to the hunter-gatherers, whose distinct genetic signature is most similar to that of extant northern Europeans. Our results suggest that migration from southern Europe catalyzed the spread of agriculture and that admixture in the wake of this expansion eventually shaped the genomic landscape of modern-day Europe.