Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19560, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379967

RESUMEN

Candida albicans (C. albicans) is an opportunistic pathogen, which causes superficial infection and can lead to mortal systemic infections, especially in immunocompromised patients. The incidence of C. albicans infections is increasing and there are a limited number of antifungal drugs used in treatment. Therefore, there is an urgent need for new and alternative antifungal drugs. Pomegranate rind extract (PRE) is known for its broad-spectrum antimicrobial activities, including against C. albicans and recently, PRE and Zn (II) have been shown to induce synergistic antimicrobial activity against various microbes. In this study, the inhibitory activities of PRE, Zn (II) and PRE in combination with Zn (II) were evaluated against C. albicans. Antifungal activities of PRE and Zn (II) were evaluated using conventional microdilution methods and the interaction between these compounds was assessed by in vitro checkerboard and time kill assays in planktonic cultures. The anti-biofilm activities of PRE, Zn (II) and PRE in combination with Zn (II) were assessed using confocal laser scanning microscopy, with quantitative analysis of biofilm biomass and mean thickness analysed using COMSTAT2 analysis. In addition, antimicrobial interactions between PRE and Zn (II) were assayed in terms reactive oxygen species (ROS) production by C. albicans. PRE and Zn (II) showed a potent antifungal activity against C. albicans, with MIC values of 4 mg/mL and 1.8 mg/mL, respectively. PRE and Zn (II) in combination exerted a synergistic antifungal effect, as confirmed by the checkerboard and time kill assays. PRE, Zn (II) and PRE and Zn (II) in combination gave rise to significant reductions in biofilm biomass, although only PRE caused a significant reduction in mean biofilm thickness. The PRE and Zn (II) in combination caused the highest levels of ROS production by C. albicans, in both planktonic and biofilm forms. The induction of excess ROS accumulation in C. albicans may help explain the synergistic activity of PRE and Zn (II) in combination against C. albicans in both planktonic and biofilm forms. Moreover, the data support the potential of the PRE and Zn (II) combination as a novel potential anti-Candida therapeutic system.


Asunto(s)
Candida albicans , Granada (Fruta) , Humanos , Antifúngicos/farmacología , Plancton , Especies Reactivas de Oxígeno/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas , Extractos Vegetales/farmacología , Zinc/farmacología
2.
Pharmaceutics ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201223

RESUMEN

Infectious diseases caused by microbial biofilms are a major clinical problem, and new antimicrobial agents that can inhibit biofilm formation and eradicate pre-formed biofilms are urgently needed. Pomegranate extracts are a well-established folkloric medicine and have been used in the treatment of infectious diseases since ancient times, whilst the addition of metal ions, including zinc (II), has enhanced the antimicrobial activity of pomegranate. Micrococcus luteus is generally a non-pathogenic skin commensal bacterium, although it can act as an opportunistic pathogen and cause serious infections, particularly involving catheterization and comorbidities. The aims of this study were to evaluate the holistic activity of pomegranate rind extract (PRE), Zn (II), and PRE/Zn (II) individually and in combination against M. luteus under both planktonic and biofilm conditions. Antimicrobial activity was detected in vitro using the broth dilution method, and synergistic activity was determined using checkerboard and time-kill assays. Effects on biofilm formation and eradication were determined by crystal violet and BacLightTM Live/Dead staining. PRE and Zn (II) exerted antimicrobial activity against M. luteus under both planktonic and biofilm conditions. After 4 h, potent synergistic bactericidal activity was also found when PRE and Zn (II) were co-administered under planktonic conditions (log reductions: PRE 1.83 ± 0.24, Zn (II) 3.4 ± 0.08, and PRE/Zn (II) 6.88 ± 1.02; p < 0.0001). In addition, greater heterogeneity was induced in the structure of M. luteus biofilm using the PRE/Zn (II) combination compared to when PRE and Zn (II) were applied individually. The activity of PRE and the PRE/Zn (II) combination could offer a novel antimicrobial therapy for the treatment of disease-associated infections caused by M. luteus and potentially other bacteria.

3.
Biomolecules ; 10(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854243

RESUMEN

Pomegranate (Punica granatum) is a well-established folklore medicine, demonstrating benefits in treating numerous conditions partly due to its antimicrobial and anti-inflammatory properties. Such desirable medicinal capabilities are attributed to a high hydrolysable tannin content, especially punicalagin. However, few studies have evaluated the abilities of pomegranate to promote oral healing, during situations such as periodontal disease or trauma. Therefore, this study evaluated the antioxidant and in vitro gingival wound healing effects of pomegranate rind extract (PRE) and punicalagin, alone and in combination with Zn (II). In vitro antioxidant activities were studied using DPPH and ABTS assays, with total PRE phenolic content measured by Folin-Ciocalteu assay. PRE, punicalagin and Zn (II) combination effects on human gingival fibroblast viability/proliferation and migration were investigated by MTT assay and scratch wounds, respectively. Punicalagin demonstrated superior antioxidant capacities to PRE, although Zn (II) exerted no additional influences. PRE, punicalagin and Zn (II) reduced gingival fibroblast viability and migration at high concentrations, but retained viability at lower concentrations without Zn (II). Fibroblast speed and distance travelled during migration were also enhanced by punicalagin with Zn (II) at low concentrations. Therefore, punicalagin in combination with Zn (II) may promote certain anti-inflammatory and fibroblast responses to aid oral healing.


Asunto(s)
Encía/efectos de los fármacos , Taninos Hidrolizables/administración & dosificación , Extractos Vegetales/administración & dosificación , Granada (Fruta) , Cicatrización de Heridas/efectos de los fármacos , Zinc/administración & dosificación , Antioxidantes/administración & dosificación , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Encía/citología , Encía/fisiología , Humanos , Técnicas In Vitro , Boca/citología , Boca/efectos de los fármacos , Boca/lesiones , Fenoles/administración & dosificación , Fenoles/análisis , Extractos Vegetales/química , Granada (Fruta)/química , Cicatrización de Heridas/fisiología
4.
Int J Pharm ; 573: 118860, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31759104

RESUMEN

There is an unmet clinical need for new products to address the high percentage of the populous who present with periodontal diseases. Drug dose retention at the point of application would facilitate sustained release and more efficacious treatments. The aim of this study was to evaluate mucoadhesive polymeric thin films for simultaneous in situ delivery chlorhexidine and anti-inflammatory and analgesic drugs. Mucoadhesive thin films were prepared using a polymer mixture containing chlorhexidine (25 mg) ± diclofenac sodium (10 and 50 mg), and lidocaine hydrochloride (10 mg) or betamethasone dipropionate (10 and 50 mg). The films were assessed for in vitro drug release and localised tissue delivery, followed by determination of modulated prostaglandin E2 (PGE2) levels in ex vivo tissue and cytotoxicity using a HaCaT keratinocyte cell line. Antibacterial activity of the chlorhexidine/diclofenac film was determined against planktonic and biofilm bacteria associated with periodontal disease and dental plaque. Chlorhexidine release was consistently low (up to 10% of initial loading) from all films, whereas the release of diclofenac, betamethasone and lidocaine exceeded 50% within 30 min. The 50 mg betamethasone film released up to 4-fold more than the 10 mg film. Statistically significant reduction of PGE2 was observed in ex vivo porcine gingival tissue for films containing chlorhexidine with or without diclofenac, and betamethasone. No cytotoxicity was observed for any film, apart from 50 mg betamethasone at 24 h. Films loaded with chlorhexidine and diclofenac were inhibitory against relevant test bacteria. Between 3 and 6 log10 reductions in bacterial cell recovery was observed after biofilm exposure to the chlorhexidine films irrespective of the presence of the anti-inflammatory or anaesthetic. This work demonstrated that thin film formulations have the potential to simultaneously counter key causative factors in periodontal diseases, namely associated bacteria biofilm and chronic local inflammation.


Asunto(s)
Analgésicos/administración & dosificación , Antiinfecciosos Locales/administración & dosificación , Antiinflamatorios/administración & dosificación , Enfermedades Periodontales/tratamiento farmacológico , Adhesividad , Administración Tópica , Analgésicos/farmacocinética , Animales , Antiinfecciosos Locales/farmacocinética , Antiinflamatorios/farmacocinética , Bacterias/efectos de los fármacos , Betametasona/administración & dosificación , Betametasona/farmacocinética , Biopelículas/efectos de los fármacos , Clorhexidina/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Diclofenaco/administración & dosificación , Diclofenaco/farmacocinética , Combinación de Medicamentos , Composición de Medicamentos/métodos , Liberación de Fármacos , Encía/metabolismo , Humanos , Queratinocitos , Lidocaína/administración & dosificación , Lidocaína/farmacocinética , Pruebas de Sensibilidad Microbiana , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Enfermedades Periodontales/microbiología , Porcinos , Vacunas de Subunidad
5.
J Tissue Eng ; 6: 2041731415586318, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26019808

RESUMEN

Bioactive growth factors identified within the extracellular matrix of dentine have been proposed roles in regulating the naturally inherent regenerative dentine formation seen in teeth in response to trauma and infection, which may also be harnessed for novel clinical treatments in augmenting mineralised tissue repair. This study examined the specific biological action of demineralised dentine matrix extract on a clonal population of dental pulp stem cells in stimulating the prerequisite stages of wound healing associated with mineralised tissue repair. A clonal dental pulp stem cell population with sustained proliferative capacity and multi-potentiality towards osteogenic, adipogenic and chondrogenic lineages was isolated from the pulp of human third molars. Dentine was collected from human healthy teeth, powdered and treated with ethylenediaminetetraacetic acid to obtain a solubilised DDM protein extract. The influence of DDM on the DPSC clonal population was assessed in vitro. Exposure of cells to proteolytically degraded DDM or unsupplemented media served as controls. Compared to controls, DDM stimulated cell expansion, reduced apoptotic marker caspase 3, increased cell survival marker Akt1 and enhanced mineralised matrix deposition as determined by mineral deposition and increased expression of bone-related markers, alkaline phosphatase and osteopontin. Dental pulp stem cells successfully migrated into collagen gels supplemented with demineralised dentine matrix, with cells remaining viable and expanding in numbers over a 3-day period. Collectively, the results provide evidence that soluble proteins extracted from dentine matrix are able to exert a direct biological effect on dental pulp stem cells in promoting mineralised tissue repair mechanisms.

6.
Stem Cells Dev ; 16(1): 39-52, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17233553

RESUMEN

Bone matrix production and mineralization involves sophisticated mechanisms, including the initial formation of an organic extracellular matrix into which inorganic hydroxyapatite crystals are later deposited. Human embryonic stem (hES) cells offer a potential to study early developmental processes and provide an unlimited source of cells. In this study, four different hES cell lines were used, and two different approaches to differentiate hES cells into the osteogenic lineage were taken. Undifferentiated cells were cultured either in suspension, facilitating the formation of embryoid bodies (EBs), or in monolayer, and both methods were in the presence of osteogenic supplements. Novel to our osteogenic differentiation study was the use of commercially available human foreskin fibroblasts to support the undifferentiated growth of the hES cell colonies, and their propagation in serum replacement-containing medium. Characterization of the osteogenic phenotype revealed that all hES cell lines differentiated toward the mesenchymal lineage, because T-Brachyury, Flt-1, and bone morphogenetic protein-4 could be detected. Main osteoblastic marker genes Runx2, osterix, bone sialoprotein, and osteocalcin were up-regulated. Alizarin Red S staining demonstrated the formation of bone-like nodules, and bone sialoprotein and osteocalcin were localized to these foci by immunohistochemistry. Cells differentiated in monolayer conditions exhibited greater osteogenic potential compared to those from EB-derived cells. We conclude that in vitro hES cells can produce a mineralized matrix possessing all the major bone markers, the differentiation of pluripotent hES cells to an osteogenic lineage does not require initiation via EB formation, and that lineage potential is not dependent on the mode of differentiation induction but on a cell line itself.


Asunto(s)
Matriz Ósea/metabolismo , Matriz Ósea/fisiología , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Osteogénesis , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Fosfatos de Calcio/metabolismo , Diferenciación Celular , Linaje de la Célula , Fibroblastos , Prepucio/citología , Marcadores Genéticos , Humanos , Masculino , Mesodermo/citología , Osteoblastos/citología , Fenotipo , Espectroscopía Infrarroja por Transformada de Fourier
7.
Biomaterials ; 27(14): 2865-73, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16427123

RESUMEN

Calcium hydroxide (Ca(OH)(2)) has been used extensively to induce dentine regeneration through formation of dentine bridges at sites of pulp exposure after dental tissue injury, however, the biological processes underpinning these events are unclear. We hypothesise that growth factors and other bio-active molecules, sequestered within dentine matrix, may be released by the action of Ca(OH)(2) and signal gene expression in pulp cells, which mediates the changes in cell behaviour observed during regeneration. Powdered sound, human dentine samples were extracted with either 0.02 m Ca(OH)(2), pH 11.7 or 10% EDTA, pH 7.2 ( a control known extractant of bio-active and other ECM molecules from dentine) over a 14-day period. Extracts were compared for non-collagenous protein (NCP) and glycosaminoglycan (GAG) content using dye binding assays and protein compositions were analysed by 1D-polyacrylamide gel electrophoresis (1D-PAGE) and TGF-beta1 ELISA. The effects of extracts on TGF-beta1, Collagen-1alpha and Nestin gene expression were analysed using semi-quantitative RT-PCR in the dental MDPC-23, OD-21 and fibroblastic Swiss 3T3 cell lines following 24h of exposure. Ca(OH)(2) solubilised NCPs and GAGs from the dentine ECM, although with a lower yield than the EDTA solution and with different kinetics. 1D-PAGE analysis demonstrated some differences in profiles for proteins solubilised from dentine by Ca(OH)(2) and EDTA. Both solutions released TGF-beta1 from the dentine with higher concentrations present in the EDTA (1.395 +/- 0.036 ng/mg) versus the Ca(OH)(2) (0.364 +/- 0.012 ng/mg) extract. Notably, both extracts induced similar gene expression profiles in all cell lines. These data provide a rational explanation for the action of Ca(OH)(2) during pulp capping in which the cellular activities involved in dentine bridge formation may be mediated through release of growth factors and other bio-active molecules from the dentine by Ca(OH)(2).


Asunto(s)
Hidróxido de Calcio/química , Dentina/química , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Proteínas/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solubilidad , Factor de Crecimiento Transformador beta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA