Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Metab Dispos ; 48(12): 1283-1292, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037043

RESUMEN

It is well documented that human hepatic clearance based on in vitro metabolism or transporter assays systematically resulted in underprediction; therefore, large empirical scalars are often needed in either static or physiologically based pharmacokinetic (PBPK) models to accurately predict human pharmacokinetics (PK). In our current investigation, we assessed hepatic uptake in hepatocyte suspension in Krebs-Henseleit buffer in the presence and absence of serum. The results showed that the unbound intrinsic active clearance (CLu,int,active) values obtained by normalizing the unbound fraction in the buffer containing 10% serum were generally higher than the CLu,int,active obtained directly from protein free buffer, suggesting "protein-facilitated" uptake. The differences of CLu,int,active in the buffer with and without protein ranged from 1- to 925-fold and negatively correlated to the unbound serum binding of organic anion transporting polypeptide substrates. When using the uptake values obtained from buffer containing serum versus serum-free buffer, the median of scaling factors (SFs) for CLu,int,active reduced from 24.2-4.6 to 22.7-7.1 for human and monkey, respectively, demonstrating the improvement of in vitro to in vivo extrapolation in a PBPK model. Furthermore, values of CLu,int,active were significantly higher in monkey hepatocytes than that in human, and the species differences appeared to be compound dependent. Scaling up in vitro uptake values derived in assays containing species-specific serum can compensate for the species-specific variabilities when using cynomolgus monkey as a probe animal model. Incorporating SFs calibrated in monkey and together with scaled in vitro data can be a reliable approach for the prospective human PK prediction in early drug discovery. SIGNIFICANCE STATEMENT: We investigated the protein effect on hepatic uptake in human and monkey hepatocytes and improved the in vitro to in vivo extrapolation using parameters obtained from the incubation in the present of serum protein. In addition, significantly higher active uptake clearances were observed in monkey hepatocytes than in human, and the species differences appeared to be compound dependent. The physiologically based pharmacokinetic model that incorporates scaling factors calibrated in monkey and together with scaled in vitro human data can be a reliable approach for the prospective human pharmacokinetics prediction.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Eliminación Hepatobiliar/fisiología , Hígado/metabolismo , Especificidad de la Especie , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos , Humanos , Infusiones Intravenosas , Hígado/citología , Macaca fascicularis , Masculino , Modelos Animales , Modelos Biológicos , Transportadores de Anión Orgánico/metabolismo , Quinolinas/administración & dosificación , Quinolinas/farmacocinética
2.
Drug Metab Dispos ; 48(11): 1199-1209, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32892154

RESUMEN

The eastern woodchuck (Marmota monax) is a hibernating species extensively used as an in vivo efficacy model for chronic human hepatitis B virus infection. Under laboratory conditions, woodchucks develop a pseudohibernation condition; thus, the pharmacokinetics (PK) of small-molecule therapeutics may be affected by the seasonal change. The seasonal PK of four probe compounds were characterized over 12 months in seven male and nine female laboratory-maintained woodchucks. These compounds were selected to study changes in oxidative metabolism [antipyrine (AP)], glucuronidation [raltegravir (RTG)], renal clearance [lamivudine (3TC)], and hepatic function [indocyanine green (ICG)]. Seasonal changes in physiologic parameters and PK were determined. Seasonal body weight increases were ≥30%. Seasonal changes in body temperature and heart rate were <10%. The mean AP exposure remained unchanged from April to August 2017, followed by a significant increase (≥1.0-fold) from August to December and subsequent decrease to baseline at the end of study. A similar trend was observed in RTG and 3TC exposures. The ICG exposure remained unchanged. No significant sex difference in PK was observed, although female woodchucks appeared to be less susceptible to seasonal PK and body weight changes. Significant seasonal PK changes for AP, RTG, and 3TC indicate decreases in oxidative metabolism, phase II glucuronidation, and renal clearance during pseudohibernation. The lack of seasonal change in ICG exposure suggests there are no significant changes in hepatic function. This information can be used to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK. SIGNIFICANCE STATEMENT: Woodchuck is a hibernating species and is commonly used as a nonclinical model of hepatitis B infection. Investigation of seasonal PK changes is perhaps of greater interest to pharmaceutical industry scientists, who use the woodchuck model to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK and/or toxicity. This information is also valuable to drug metabolism and veterinary scientists in understanding woodchuck's seasonal metabolism and behavior under the pseudohibernation condition.


Asunto(s)
Antivirales/farmacocinética , Hepatitis B Crónica/tratamiento farmacológico , Hibernación/fisiología , Marmota/fisiología , Tasa de Depuración Metabólica/fisiología , Animales , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Masculino , Estaciones del Año
3.
J Clin Pharmacol ; 49(5): 513-33, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19299532

RESUMEN

Quantitative prediction of human pharmacokinetics is critical in assessing the viability of drug candidates and in determining first-in-human dosing. Numerous prediction methodologies, incorporating both in vitro and preclinical in vivo data, have been developed in recent years, each with advantages and disadvantages. However, the lack of a comprehensive data set, both preclinical and clinical, has limited efforts to evaluate the optimal strategy (or strategies) that results in quantitative predictions of human pharmacokinetics. To address this issue, the authors conducted a retrospective analysis using 50 proprietary compounds for which in vitro, preclinical pharmacokinetic data and oral single-dose human pharmacokinetic data were available. Five predictive strategies, involving either allometry or use of unbound intrinsic clearance from microsomes or hepatocytes, were then compared for their ability to predict human oral clearance, half-life through predictions of systemic clearance, volume of distribution, and bioavailability. Use of a single-species scaling approach with rat, dog, or monkey was as accurate as or more accurate than using multiple-species allometry. For those compounds cleared almost exclusively by P450-mediated pathways, scaling from human liver microsomes was as predictive as single-species scaling of clearance based on data from rat, dog, or monkey. These data suggest that use of predictive methods involving either single-species in vivo data or in vitro human liver microsomes can quantitatively predict human in vivo pharmacokinetics and suggest the possibility of streamlining the predictive methodology through use of a single species or use only of human in vitro microsomal preparations.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Modelos Biológicos , Farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Biometría , Semivida , Hepatocitos/metabolismo , Humanos , Tasa de Depuración Metabólica , Microsomas Hepáticos/metabolismo , Reproducibilidad de los Resultados , Estudios Retrospectivos , Especificidad de la Especie , Xenobióticos/farmacocinética
4.
Drug Metab Dispos ; 34(9): 1443-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16760229

RESUMEN

This study was designed to evaluate the use of cerebrospinal fluid (CSF) drug concentration and plasma unbound concentration (C(u,plasma)) to predict brain unbound concentration (C(u,brain)). The concentration-time profiles in CSF, plasma, and brain of seven model compounds were determined after subcutaneous administration in rats. The C(u,brain) was estimated from the product of total brain concentrations and unbound fractions, which were determined using brain tissue slice and brain homogenate methods. For theobromine, theophylline, caffeine, fluoxetine, and propranolol, which represent rapid brain penetration compounds with a simple diffusion mechanism, the ratios of the area under the curve of C(u,brain)/C(CSF) and C(u,brain)/C(u,plasma) were 0.27 to 1.5 and 0.29 to 2.1, respectively, using the brain slice method, and were 0.27 to 2.9 and 0.36 to 3.9, respectively, using the brain homogenate method. A P-glycoprotein substrate, CP-141938 (methoxy-3-[(2-phenyl-piperadinyl-3-amino)-methyl]-phenyl-N-methyl-methane-sulfonamide), had C(u,brain)/C(CSF) and C(u,brain)/C(u,plasma) ratios of 0.57 and 0.066, using the brain slice method, and 1.1 and 0.13, using the brain homogenate method, respectively. The slow brain-penetrating compound, N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl-]sarcosine, had C(u,brain)/C(CSF) and C(u,brain)/C(u,plasma) ratios of 0.94 and 0.12 using the brain slice method and 0.15 and 0.018 using the brain homogenate method, respectively. Therefore, for quick brain penetration with simple diffusion mechanism compounds, C(CSF) and C(u,plasma) represent C(u,brain) equally well; for efflux substrates or slow brain penetration compounds, C(CSF) appears to be equivalent to or more accurate than C(u,plasma) to represent C(u,brain). Thus, we hypothesize that C(CSF) is equivalent to or better than C(u,plasma) to predict C(u,brain). This hypothesis is supported by the literature data.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fluoxetina/líquido cefalorraquídeo , Teobromina/líquido cefalorraquídeo , Teofilina/líquido cefalorraquídeo , Animales , Evaluación Preclínica de Medicamentos/métodos , Fluoxetina/sangre , Fluoxetina/farmacocinética , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Teobromina/sangre , Teobromina/farmacocinética , Teofilina/sangre , Teofilina/farmacocinética
5.
J Pharm Sci ; 94(1): 38-45, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15761928

RESUMEN

Higher-throughput ADME programs in early drug discovery are becoming common throughout the pharmaceutical industry as companies strive to reduce their compound attrition in later-stage development. Many of the ADME assays developed into higher-throughput formats rely on LC/MS analyses. Since the biological aspects of the assay are amenable to parallel processes using dense plate formats, the number of samples generated from these assays produce a large analysis load for serial LC/MS. Presented in this report are two novel strategies, including a sample pooling method and a two time-point method, that could be used in drug discovery to reduce the number of samples generated during multiple time-point in-vitro ADME assays. One hundred and sixty-three compounds were subjected to human microsomal incubations with full time-point method samples taken at t = 0, 5, 15, 30, and 45 min. The ER data correlation (R(2)) between the full time-point method and the pooling method and two time-point methods were 0.98 and 0.97, respectively. Both methods have the potential to: 1. produce data of similar quality to traditional high throughput ADME assays, 2. be easily implemented, 3. shorten analytical run times, and 4. be reproducible and robust.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo , Algoritmos , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , Interpretación Estadística de Datos , Semivida , Humanos , Cinética , Espectrometría de Masas , Microsomas Hepáticos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA