Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Prod Res ; 35(4): 649-654, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30931629

RESUMEN

As part of our systematic study on Korean toxic mushrooms, bioactivity-guided fractionation of the MeOH extract of Amanita spissacea (Amanitaceae) fruiting bodies and chemical investigation of its cytotoxic fractions led to the isolation of (9E)-8-oxo-9-octadecenoic acid (1), (10E)-9-oxo-10-octadecenoic acid (2), (9E)-8-oxo-9-octadecenoate methyl ester (3), (9Z)-9-octadecenoate-(2'S)-2',3'-dihydroxypropyl ester (4), (9Z)-9-octadecenoic acid (5), and palmitic acid (6). The structures of the isolates were elucidated by NMR spectroscopic analysis and LC/MS analysis. Among the isolated compounds, compounds 1 and 2 exhibited the most potent cytotoxic activity in all human lung cancer cell lines examined, with IC50 values ranging from 255.7 to 321.0 µM and 250.2 to 322.5 µM, respectively. The cytotoxicity of these compounds was also found to be mediated by apoptosis associated with caspase-3 activation. These findings provide experimental evidence suggesting the potential of A. spissacea as a promising natural source for the discovery of novel anticancer drug candidates.


Asunto(s)
Amanita/química , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/patología , Antineoplásicos/farmacología , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Metanol , Extractos Vegetales/farmacología
2.
Cells ; 9(1)2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861943

RESUMEN

Hepatic fibrosis is characterized by the abnormal deposition of extracellular matrix (ECM) proteins. During hepatic fibrogenesis, hepatic stellate cell (HSC) activation followed by chronic injuries is considered a key event in fibrogenesis, and activated HSCs are known to comprise approximately 90% of ECM-producing myofibroblasts. Here, we demonstrated that (-)-catechin-7-O-ß-d-apiofuranoside (C7A) significantly inhibited HSC activation via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This is the first study to show the hepatic protective effects of C7A with possible mechanisms in vitro and in vivo. In our bioactivity screening, we figured out that the EtOH extract of Ulmusdavidiana var. japonica root barks, which have been used as a Korean traditional medicine, inhibited collagen synthesis in HSCs. Four catechins isolated from the EtOAc fraction of the EtOH extract were compared with each other in terms of reduction in collagen, which is considered as a marker of hepatic protective effects, and C7A showed the strongest inhibitory effects on HSC activation in protein and qPCR analyses. As a possible mechanism, we investigated the effects of C7A on the STAT3 signaling pathway, which is known to activate HSCs. We found that C7A inhibited phosphorylation of STAT3 and translocation of STAT3 to nucleus. C7A also inhibited expressions of MMP-2 and MMP-9, which are downstream genes of STAT3 signaling. Anti-fibrotic effects of C7A were evaluated in a thioacetamide (TAA)-induced liver fibrosis model, which indicated that C7A significantly inhibited ECM deposition through inhibiting STAT3 signaling. C7A decreased serum levels of aspartate amino transferase and alanine transaminase, which were markedly increased by TAA injection. Moreover, ECM-associated proteins and mRNA expression were strongly suppressed by C7A. Our study provides the experimental evidence that C7A has inhibitory effects on HSC activation after live injury and has preventive and therapeutic potentials for the management of hepatic fibrosis.


Asunto(s)
Catequina/administración & dosificación , Células Estrelladas Hepáticas/citología , Factor de Transcripción STAT3/metabolismo , Ulmus/química , Animales , Catequina/química , Catequina/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Masculino , Fosforilación , Corteza de la Planta/química , Extractos Vegetales/química , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Bioorg Chem ; 91: 103145, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31357073

RESUMEN

The root bark of Ulmus davidiana var. japonica (Ulmaceae), commonly known as yugeunpi, has been used as a traditional Korean medicine for the treatment of gastroenteric and inflammatory disorders. As part of continuing projects to discover bioactive natural products from traditional medicinal plants with pharmacological potential, phytochemical investigation of the root bark of this plant was carried out. This led to the successful isolation of a new chromane derivative (1) and 22 known compounds: catechin derivatives (2-5), megastigmane glycoside (6), dihydrochalcone glycosides (7 and 8), flavanone glycosides (9 and 10), coumarins (11 and 12), lignan derivatives (13-17), and phenolic compounds (18-23). The structure of the new compound (1) was determined with 1D and 2D NMR spectroscopy and HR-ESIMS, and its absolute configurations were achieved by chemical reactions and the gauge-including atomic orbital (GIAO) NMR chemical shifts calculations. All the isolated compounds were evaluated for their potential biological activities including neuro-protective, anti-neuroinflammatory, and anti-Helicobacter pylori activities. Among the isolates, compounds 1, 8, and 20 displayed stronger potency by causing a greater increase in the production and the activity of nerve growth factor (NGF) in C6 glioma cells (147.04 ±â€¯4.87, 206.27 ±â€¯6.70, and 143.70 ±â€¯0.88%, respectively), whereas compounds 11, 14, and 19 inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated murine microglial cells (IC50 of 18.72, 12.31, and, 21.40 µM, respectively). In addition, compounds 1, 11, 18, and 20 showed anti-H. pylori activity with MIC values of 25 or 50 µM against two strains of H. pylori 51 and 43504. These findings provide scientific evidence that supports the traditional usage of U. davidiana var. japonica root bark in the treatment of gastroenteric and inflammatory disorders.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Fármacos Neuroprotectores/farmacología , Corteza de la Planta/química , Extractos Vegetales/farmacología , Ulmus/química , Animales , Células Cultivadas , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Factor de Crecimiento Nervioso/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/química , Ratas
4.
J Clin Med ; 9(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31887972

RESUMEN

Ulmus parvifolia is one of the medicinal plants used traditionally for treatment of wounds. We intended to investigate the wound healing effect of the powder of Ulmus parvifolia (UP) root bark in a mouse wound healing model. We also determined the mechanisms of effects of U. parvifolia in skin and skin wound healing effects using a keratinocyte model. Animal experiments showed that the wound lesions in the mice decreased with 200 mesh U. parvifolia root bark powder and were significantly reduced with treatment by UP, compared with those treated with Ulmus macrocarpa (UM). Results from in vitro experiments also revealed that UP extract promoted the migration of human skin keratinocytes. UP powder treatment upregulated the expression of the matrix metalloproteinase-2 and -9 protein and significantly increased transforming growth factor (TGF)-ß levels. We confirmed that topical administration of the bark powder exerted a significant effect on skin wound healing by upregulating the expression of MMP and transforming growth factor-ß. Our study suggests that U. parvifolia may be a potential candidate for skin wound healing including epidermal skin rejuvenation.

5.
Bioorg Chem ; 82: 26-32, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267971

RESUMEN

Inflammation is not only a self-defense response of the innate immune system, but also the pathogenesis mechanism of multiple diseases such as arthritis, neurodegeneration, and cancer. Curcuma zedoaria Roscoe (Zingiberaceae), an indigenous plant of India, has been used traditionally in Ayurveda and folk medicine. As part of our ongoing efforts to screen traditional medicinal plants exhibiting pharmacological potential and to characterize the compounds involved, we examined the anti-inflammatory effects of the MeOH extract of C. zedoaria rhizomes using lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells and found that MeOH extract inhibited the synthesis of nitric oxide (NO) in a dose-dependent manner (IC50: 23.44 ±â€¯0.77 µg/mL). In our efforts to characterize the compounds responsible for these anti-inflammatory effects, bioactivity-guided fractionation of the MeOH extract and chemical investigation of its active hexane-soluble fraction led to the successful isolation of five sesquiterpenes (1-5), the structures of which were elucidated by NMR spectroscopic analysis and LC/MS analysis. Among them, curcuzedoalide (5) exhibited potent inhibitory effects on NO synthesis (IC50: 12.21 ±â€¯1.67 µM) and also suppressed pre-inflammatory protein expression of iNOS and COX-2. Curcuzedoalide (5) was thus determined to be a contributor to the anti-inflammatory effect of C. zedoaria rhizomes and could be a potential candidate for therapeutic applications.


Asunto(s)
Antiinflamatorios/farmacología , Curcuma/química , Rizoma/química , Sesquiterpenos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/toxicidad , Ciclooxigenasa 2/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Células RAW 264.7 , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/toxicidad
6.
Arch Pharm Res ; 41(8): 815-822, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30109574

RESUMEN

Identification of bioactive natural products with anticancer activity as well as alleviating effects on chemotherapy-induced side effects has significant implications for cancer treatment. Betula platyphylla var. japonica, commonly known as Asian white birch, has been used in Chinese traditional medicine for a variety of purposes. In this study, the medicinal properties of betulin from B. platyphylla var. japonica useful for cancer management were investigated. LC/MS analysis revealed that betulin is a main chemical component of the EtOH extract of B. platyphylla var. japonica bark, and betulin was isolated from EtOH extract using an LC/MS-guided isolation method. Its structure was identified with 1H and 13C NMR spectroscopic data and LC/MS analysis and then compared to the previously reported spectroscopic and physical data. We first verified the cytotoxicity of betulin against three human lung adenocarcinoma cell lines, A549, H1264, and Calu-6, with IC50 values ranging from 18.7 to 39.6 µM. Regarding alleviation of side effects associated with anticancer chemotherapy, betulin ameliorated cisplatin-induced renal cell damage to 80% of the control value from the concentration of 5 µM. In addition, betulin showed anti-gastritis activity against ethanol-induced gastric damage in rats and notably reduced the gastric damage index compared to control in a concentration-dependent manner. These findings provide the first experimental evidence for potential use of B. platyphylla var. japonica as a functional food for cancer treatment that simultaneously alleviates the side effects of chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Betula/química , Mucosa Gástrica/efectos de los fármacos , Corteza de la Planta/química , Triterpenos/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Etanol , Mucosa Gástrica/patología , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Extractos Vegetales/química , Ratas , Ratas Wistar , Triterpenos/química , Triterpenos/aislamiento & purificación , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA