Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 435-443, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35686542

RESUMEN

This study aimed to study the effect of excessive elemental sulfur addition on intake, digestibility, rumen characteristics, blood metabolites and nitrogen balance in Thai native beef cattle fed diets containing high fresh cassava root (FCR) supplementation. Four Thai native beef cattle with an initial body weight (BW) of 100 ± 10.0 kg were used and randomly assigned to a 2 × 2 factorial in a 4 × 4 Latin square design. Two levels of FCR supplementation at 15 (FCR-1.5) and 20 g/kg of BW (FCR-2) and two levels of sulfur supplementation in concentrate at 10 (Sulfur-1) and 20 g/kg dry matter concentrate (Sulfur-2) were evaluated. This study showed that sulfur and FCR in combination (p < 0.05) increased dry matter and organic matter digestibility and bacterial population. Sulfur-2 resulted in higher (p < 0.05) sulfur intake and serum thiocyanate concentration than Sulfur-1. FCR-2 had a greater (p < 0.05) FCR intake, total volatile fatty acids and propionate concentration than FCR-1.5. In conclusion, excessive elemental sulfur addition with high FCR supplementation showed no negative effect in Thai native beef cattle.


Asunto(s)
Suplementos Dietéticos , Manihot , Animales , Bovinos , Alimentación Animal/análisis , Dieta/veterinaria , Digestión , Ingestión de Alimentos , Fermentación , Nitrógeno/metabolismo , Rumen/metabolismo , Azufre/metabolismo , Azufre/farmacología
2.
PLoS One ; 17(9): e0273916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048798

RESUMEN

The purpose of this field study was to compare the effects of top-dressing tropical lactating cows with soybean meal (SBM) or citric waste fermented yeast waste (CWYW) on intake, digestibility, ruminal fermentation, blood metabolites, purine derivatives, milk production, and economic return. Sixteen mid-lactation Thai crossbreeds, Holstein Friesian (16.7 ± 0.30 kg/day milk yield and 490 ± 40.0 kg of initial body weight) were randomly allocated to two treatments in a completed randomized design: SBM as control (n = 8) or CWYW (n = 8). The feeding trial lasted for 60 days plus 21 days for treatment adaptation. The results showed that total dry matter intake, nutrient intake, and digestibility did not (p>0.05) differ between SBM and CWYW top-dressing. Ruminal pH and the protozoal population did not (p>0.05) differ between SBM and CWYW top-dressing. After 4 hours of feeding, CWYW top-dressing showed greater ammonia nitrogen, plasma urea nitrogen, and bacterial population compared with the top-dressing of SBM. Volatile fatty acids and purine derivatives were not different (p>0.05) between SBM and CWYW top-dressing. For milk urea nitrogen, there was a greater (p<0.05) and somatic cell count was lower (p<0.05) for cows fed the CWYW top-dress compared to cows fed the SBM top-dress. The cost of the top-dress and total feed cost were less (p<0.05) for CWYW compared to SBM top-dressing, at 0.59 vs 1.16 US dollars/cow/day and 4.14 vs 4.75 US dollars/cow/day, respectively. In conclusion, CWYW could be used as an alternative protein source to SBM without having a negative impact on tropical lactating cows.


Asunto(s)
Lactancia , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Femenino , Fermentación , Leche/metabolismo , Nitrógeno/metabolismo , Purinas/metabolismo , Rumen/metabolismo , Glycine max/metabolismo , Tailandia , Urea/metabolismo
3.
BMC Vet Res ; 17(1): 304, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503491

RESUMEN

BACKGROUND: Total fresh cassava root (FCR) production was 275 million tonnes in 2018 which equals 61.1 % of the total production, and Thailand produced 10.7 % FCR of the total production. FCR is one of the main energy source for ruminant. The limitation of FCR utilization is due to the presence of hydrogen cyanide (HCN). The study aimed to evaluate the effect of sulfur, urea and FCR at various levels on in vitro gas production, ruminal fermentation and in vitro degradability. The study hypothesized that: (1) sulfur, urea and FCR have no interaction effect and (2) effect of FCR and urea is related to sulfur addition. RESULTS: The study aimed to elucidate the optimum level of elemental sulfur, fresh cassava root (FCR) and urea and their effect on in vitro gas production, ruminal fermentation, thiocyanate concentration, and in vitro degradability. A 3 × 2 × 4 in a completely randomized design were conducted. Factor A was level of sulfur at 0 %, 1 and 2 % of concentrate dry matter (DM), factor B was level of urea at 2 and 4 % of concentrate DM, and factor C was level of the FCR at 0, 200, 300 and 400 mg DM of the total substrate. The study found that elemental sulfur, urea and FCR had no interaction effect on the kinetics of in vitro gas, ruminal fermentation, HCN and in vitro degradability. Elemental sulfur supplementation (P < 0.05) significantly increased the in vitro gas produced from an insoluble fraction (b), in vitro DM degradability and either neutral detergent fiber (NDF) or acid detergent fiber (ADF) degradability and propionate (C3) concentration while decreased the ruminal HCN concentration. Urea levels showed a (P < 0.05) significant increase of the potential extent of in vitro gas production, ruminal ammonia nitrogen (NH3-N) and total volatile fatty acid (TVFA). Fresh cassava root supplementation (P < 0.05) significantly increased the in vitro gas produced from an immediate soluble fraction (a), in vitro gas produced from insoluble fraction, in vitro gas production rate constant, total VFA, C3 concentration and HCN while decreased ruminal pH, acetate and butyrate concentration. It could be concluded that 2 % elemental sulfur, 4 % urea and 300 mg FCR showed a greater effect on in vitro gas production, ruminal fermentation and HCN reduction. CONCLUSIONS: The study found that elemental sulfur, urea, and FCR had no interaction effect on the kinetics of in vitro gas, total in vitro gas, ruminal fermentation, and HCN concentration. It could be concluded that 2 % elemental sulfur, 4 % urea, and 300 mg FCR showed a greater effect on in vitro gas production, ruminal fermentation, and HCN reduction.


Asunto(s)
Alimentación Animal/análisis , Metano/metabolismo , Raíces de Plantas/metabolismo , Rumen/efectos de los fármacos , Azufre/farmacología , Urea/farmacología , Animales , Suplementos Dietéticos/análisis , Digestión/efectos de los fármacos , Digestión/fisiología , Fermentación/efectos de los fármacos , Fermentación/fisiología , Manihot/metabolismo , Metano/análisis
4.
Trop Anim Health Prod ; 53(2): 196, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674897

RESUMEN

The aim of the study was to conduct a basic evaluation of the in vitro effect of crude protein (CP) levels in concentrate and a saponin extract from Sesbania graniflora pods meal (SES) on the kinetics of gas, nutrient digestibility, ruminal fermentation, protein efficiency uses, and methane (CH4) mitigation. Eight treatments were formed according to a 2 × 4 factorial design in a completely randomized design (CRD). The first factor referred to the levels of CP at 14 and 16% on dry matter (DM) basis in the concentrate diet, and the second factor referred to the levels of SES supplementation at 0, 0.2, 0.4, and 0.6% of the total substrate on a DM basis. The results showed that S. graniflora pod meal contained 21.73% CP, 10.87% condensed tannins, and 16.20% crude saponins, respectively. Most kinetics of gas as well as cumulative gas were not influenced by the CP levels or SES addition (P > 0.05) except gas production from immediately soluble fraction (a) was significantly different by CP levels. Ammonia-nitrogen concentration of incubation at 4 h was significantly difference based on the CP levels and SES supplementation (P < 0.05). Increasing SES levels significantly (P < 0.05) decreased protozoal population. In vitro digestibility of DM and organic matter was not changed by CP levels or SES addition. Butyrate and acetate to propionate ration were decreased, and propionate was increased when increasing SES dose (P < 0.05), while CP levels did not change total volatile fatty acids and molar portions. The ruminal CH4 concentration was reduced by 44.12% when 0.6% SES was added after 8 h of incubation. Therefore, SES supplementation could enhance protein utilization and improve rumen fermentation particularly lowering CH4 production.


Asunto(s)
Fermentación/efectos de los fármacos , Metano/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteínas/metabolismo , Rumen/efectos de los fármacos , Saponinas/farmacología , Sesbania/química , Alimentación Animal , Animales , Bovinos , Dieta/veterinaria , Digestión , Femenino , Gases/metabolismo , Rumen/metabolismo , Saponinas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA