Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1339580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333005

RESUMEN

In recent decades, scholarly investigations have predominantly centered on nanomaterials possessing enzyme-like characteristics, commonly referred to as nanozymes. These nanozymes have emerged as viable substitutes for natural enzymes, offering simplicity, stability, and superior performance across various applications. Inorganic nanoparticles have been extensively employed in the emulation of enzymatic activity found in natural systems. Nanoparticles have shown a strong ability to mimic a number of enzyme-like functions. These systems have made a lot of progress thanks to the huge growth in nanotechnology research and the unique properties of nanomaterials. Our presentation will center on the kinetics, processes, and applications of peroxidase-like nanozymes. In this discourse, we will explore the various characteristics that exert an influence on the catalytic activity of nanozymes, with a particular emphasis on the prevailing problems and prospective consequences. This paper presents a thorough examination of the latest advancements achieved in the domain of peroxidase mimetic nanozymes in the context of cancer diagnosis and treatment. The primary focus is on their use in catalytic cancer therapy, alongside chemotherapy, phototherapy, sonodynamic therapy, radiation, and immunotherapy. The primary objective of this work is to offer theoretical and technical assistance for the prospective advancement of anticancer medications based on nanozymes. Moreover, it is anticipated that this will foster the investigation of novel therapeutic strategies aimed at achieving efficacious tumor therapy.

2.
Clin Nutr Open Sci ; 47: 6-43, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36540357

RESUMEN

The novel coronavirus infection (COVID-19) conveys a serious global threat to health and economy. A common predisposing factor for development to serious progressive disease is presence of a low-grade inflammation, e.g., as seen in diabetes, metabolic syndrome, and heart failure. Micronutrient deficiencies may also contribute to the development of this state. Therefore, the aim of the present study is to explore the role of the nutrition to relieve progression of COVID-19. According PRISMA protocol, we conducted an online databases search including Scopus, PubMed, Google Scholar and web of science for published literatures in the era of COVID-19 Outbreak regarding to the status of nutrition and COVID-19 until December 2021. There were available studies (80 studies) providing direct evidence regarding the associations between the status of nutrition and COVID-19 infection. Adequate nutritional supply is essential for resistance against other viral infections and also for improvement of immune function and reduction of inflammation. Hence, it is suggested that nutritional intervention which secures an adequate status might protect against the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome - coronavirus-2) and mitigate its course. We also recommend initiation of adequate nutritional supplementation in high-risk areas and/or soon after the time of suspected infection with SARS-CoV-2. Subjects in high-risk groups should have high priority for applying this nutritive adjuvant therapy that should be started prior to administration of specific and supportive medical measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA