Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 15(3): 895-906, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22958119

RESUMEN

Ornithine lipids (OLs) are phosphorus-free membrane lipids that are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. It has been shown that OLs can be hydroxylated within the amide-linked fatty acyl moiety, the secondary fatty acyl moiety or within the ornithine moiety. These modifications have been related to increased stress tolerance and symbiotic proficiency in different organisms such as Rhizobium tropici or Burkholderia cenocepacia. Analysing the membrane lipid composition of the plant pathogen Agrobacterium tumefaciens we noticed that it forms two different OLs. In the present work we studied if OLs play a role in stress tolerance and pathogenicity in A. tumefaciens. Mutants deficient in the OLs biosynthesis genes olsB or olsE were constructed and characterized. They either completely lack OLs (ΔolsB) or only form the unmodified OL (ΔolsE). Here we present a characterization of both OL mutants under stress conditions and in a plant transformation assay using potato tuber discs. Surprisingly, the lack of agrobacterial OLs promotes earlier tumour formation on the plant host.


Asunto(s)
Agrobacterium/genética , Agrobacterium/metabolismo , Ornitina/análogos & derivados , Tumores de Planta/microbiología , Agrobacterium/patogenicidad , Lípidos/genética , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Ornitina/genética , Ornitina/metabolismo , Tubérculos de la Planta/microbiología , Solanum tuberosum/microbiología , Estrés Fisiológico
2.
Proc Natl Acad Sci U S A ; 107(1): 302-7, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20018679

RESUMEN

Rhizobia are Gram-negative soil bacteria able to establish nitrogen-fixing root nodules with their respective legume host plants. Besides phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine, rhizobial membranes contain phosphatidylcholine (PC) as a major membrane lipid. Under phosphate-limiting conditions of growth, some bacteria replace their membrane phospholipids with lipids lacking phosphorus. In Sinorhizobium meliloti, these phosphorus-free lipids are sulfoquinovosyl diacylglycerol, ornithine-containing lipid, and diacylglyceryl trimethylhomoserine (DGTS). Pulse-chase experiments suggest that the zwitterionic phospholipids phosphatidylethanolamine and PC act as biosynthetic precursors of DGTS under phosphorus-limiting conditions. A S. meliloti mutant, deficient in the predicted phosphatase SMc00171 was unable to degrade PC or to form DGTS in a similar way as the wild type. Cell-free extracts of Escherichia coli, in which SMc00171 had been expressed, convert PC to phosphocholine and diacylglycerol, showing that SMc00171 functions as a phospholipase C. Diacylglycerol , in turn, is the lipid anchor from which biosynthesis is initiated during the formation of the phosphorus-free membrane lipid DGTS. Inorganic phosphate can be liberated from phosphocholine. These data suggest that, in S. meliloti under phosphate-limiting conditions, membrane phospholipids provide a pool for metabolizable inorganic phosphate, which can be used for the synthesis of other essential phosphorus-containing biomolecules. This is an example of an intracellular phospholipase C in a bacterial system; however, the ability to degrade endogenous preexisting membrane phospholipids as a source of phosphorus may be a general property of Gram-negative soil bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lípidos de la Membrana/metabolismo , Fósforo/metabolismo , Sinorhizobium meliloti/enzimología , Fosfolipasas de Tipo C/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Lípidos de la Membrana/química , Estructura Molecular , Mutación , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Sinorhizobium meliloti/citología , Sinorhizobium meliloti/genética , Triglicéridos/química , Triglicéridos/metabolismo , Fosfolipasas de Tipo C/genética
3.
Mol Plant Microbe Interact ; 18(9): 973-82, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16167767

RESUMEN

The microsymbiont of alfalfa, Sinorhizobium meliloti, possesses phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine as major membrane phospholipids, when grown in the presence of sufficient accessible phosphorus sources. Under phosphate-limiting conditions of growth, S. meliloti replaces its phospholipids by membrane lipids that do not contain any phosphorus in their molecular structure and, in S. meliloti, these phosphorus-free membrane lipids are sulphoquinovosyl diacylglycerols (SL), ornithine-containing lipids (OL), and diacylglyceryl-N,N,N-trimethylhomoserines (DGTS). In earlier work, we demonstrated that neither SL nor OL are required for establishing a nitrogen-fixing root nodule symbiosis with alfalfa. We now report the identification of the two structural genes btaA and btaB from S. meliloti required for DGTS biosynthesis. When the sinorhizobial btaA and btaB genes are expressed in Escherichia coli, they cause the formation of DGTS in this latter organism. A btaA-deficient mutant of S. meliloti is unable to form DGTS but can form nitrogen-fixing root nodules on alfalfa, demonstrating that sinorhizobial DGTS is not required for establishing a successful symbiosis with the host plant. Even a triple mutant of S. meliloti, unable to form any of the phosphorus-free membrane lipids SL, OL, or DGTS is equally competitive for nodule occupancy as the wild type. Only under growth-limiting concentrations of phosphate in culture media did mutants that could form neither OL nor DGTS grow to lesser cell densities.


Asunto(s)
Medicago sativa/microbiología , Lípidos de la Membrana/metabolismo , Fósforo/metabolismo , Sinorhizobium meliloti/crecimiento & desarrollo , Sinorhizobium meliloti/metabolismo , Secuencia de Bases , Medios de Cultivo , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Bacterianos , Medicago sativa/metabolismo , Lípidos de la Membrana/química , Fijación del Nitrógeno , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Sinorhizobium meliloti/genética , Simbiosis/fisiología
4.
J Bacteriol ; 186(6): 1667-77, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14996797

RESUMEN

In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Fosfatidiletanolaminas/metabolismo , Sinorhizobium meliloti/crecimiento & desarrollo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Colina/metabolismo , Medios de Cultivo , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Lípidos/análisis , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia de ADN , Sinorhizobium meliloti/química , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA