Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 966929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003819

RESUMEN

Extensive use of chemical control agents and fungicides typically leads to numerous risks to human health and the environment. Using plant extracts as natural substances represents a dual key for the environment and sustainable food production, as it reduces the input of synthetic pesticides into the environment and/or controls plant pathogens. For the first time, a Plantago lagopus ethanolic extract has been characterized and evaluated for its protective and curative effects against Rhizoctonia solani in tomato plants. The results showed that P. lagopus extract (10 µg/ml) completely inhibited R. solani mycelial growth in vitro. At 20 days of post fungal inoculation, the results demonstrated that using P. lagopus extract (100 µg/ml) in vivo enhanced tomato plant growth by significantly increasing shoot and root parameters in protective and curative treatments. Furthermore, the protective and curative treatments significantly reduced the disease index by 18.66 and 38.66%, respectively. Induction of systemic resistance with upregulation of PR-1 and PR-2 and a significant increase in the transcriptional levels of PR-3 and CHS in all P. lagopus extract-treated tomato plants were reported compared to untreated plants. HPLC analysis showed that the most common polyphenolic components detected in P. lagopus extract were rutin (74206.3 mg/kg), naringenin (2388.74 mg/kg), quercetin (1249.13 mg/kg), and p-hydroxybenzoic acid (1035.87 mg/kg). In addition, the ellagic acid (798.47 mg/kg), vanillic acid (752.55 mg/kg), catechol (648.89 mg/kg), cinnamic acid (332.51 mg/kg), ferulic acid (296.32 mg/kg), benzoic acid (295.95 mg/kg), and chlorogenic acid (116.63 mg/kg) were also reported. Our study is the first to show that P. lagopus extract can help plants fight off R. solani fungal infection. Furthermore, the findings imply that using the P. lagopus extract as a natural biocontrol agent could be a sustainable strategy to manage plant fungal diseases.

2.
Plants (Basel) ; 11(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35050077

RESUMEN

Tomato (Lycopersicon esculentum Mill.) is important food in daily human diets. Root rot disease by Fusarium oxysporum caused huge losses in tomato quality and yield annually. The extensive use of synthetic and chemical fungicides has environmental risks and health problems. Recent studies have pointed out the use of medicinal plant essential oils (EOs) and extracts for controlling fungal diseases. In the current research, Mentha spicata and Mentha longifolia EOs were used in different concentrations to control F. oxysporum. Many active compounds are present in these two EOs such as: thymol, adapic acid, menthol and menthyl acetate. These compounds possess antifungal effect through malformation and degradation of the fungal cell wall. The relative expression levels of distinctly upregulated defense-related WRKY genes (WRKY1, WRKY4, WRKY33 and WRKY53) in seedling root were evaluated as a plant-specific transcription factor (TF) group in different response pathways of abiotic stress. Results showed significant expression levels of WRKY, WRKY53, WRKY33, WRKY1 and WRKY4 genes. An upregulation was observed in defense-related genes such as chitinase and defensin in roots by application EOs under pathogen condition. In conclusion, M. spicata and M. longifolia EOs can be used effectively to control this plant pathogen as sustainable and eco-friendly botanical fungicides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA