Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Metab ; 79: 101840, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036170

RESUMEN

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Asunto(s)
Ácidos Grasos no Esterificados , Proopiomelanocortina , Ratones , Animales , Ácidos Grasos no Esterificados/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Ratones Obesos , Peso Corporal , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Metabolismo Energético/fisiología
2.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598900

RESUMEN

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Asunto(s)
Intolerancia a la Glucosa , Obesidad Materna , Humanos , Femenino , Animales , Ratones , Embarazo , Barrera Hematoencefálica/metabolismo , Eminencia Media/metabolismo , Obesidad Materna/metabolismo , Madres , Intolerancia a la Glucosa/metabolismo , Obesidad/metabolismo , Hipotálamo/metabolismo , Dieta Alta en Grasa/efectos adversos , Fenómenos Fisiologicos Nutricionales Maternos
3.
Sci Rep ; 10(1): 11047, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632088

RESUMEN

Hypothalamic adult neurogenesis provides the basis for renewal of neurons involved in the regulation of whole-body energy status. In addition to hormones, cytokines and growth factors, components of the diet, particularly fatty acids, have been shown to stimulate hypothalamic neurogenesis; however, the mechanisms behind this action are unknown. Here, we hypothesized that GPR40 (FFAR1), the receptor for medium and long chain unsaturated fatty acids, could mediate at least part of the neurogenic activity in the hypothalamus. We show that a GPR40 ligand increased hypothalamic cell proliferation and survival in adult mice. In postnatal generated neurospheres, acting in synergy with brain-derived neurotrophic factor (BDNF) and interleukin 6, GPR40 activation increased the expression of doublecortin during the early differentiation phase and of the mature neuronal marker, microtubule-associated protein 2 (MAP2), during the late differentiation phase. In Neuro-2a proliferative cell-line GPR40 activation increased BDNF expression and p38 activation. The chemical inhibition of p38 abolished GPR40 effect in inducing neurogenesis markers in neurospheres, whereas BDNF immunoneutralization inhibited GPR40-induced cell proliferation in the hypothalamus of adult mice. Thus, GPR40 acts through p38 and BDNF to induce hypothalamic neurogenesis. This study provides mechanistic advance in the understating of how a fatty acid receptor regulates adult hypothalamic neurogenesis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Neurogénesis/fisiología , Receptores Acoplados a Proteínas G/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hipotálamo/efectos de los fármacos , Imidazoles/farmacología , Interleucina-6/fisiología , Ligandos , Masculino , Metilaminas/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Propionatos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
4.
Brain Behav Immun ; 87: 272-285, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31863824

RESUMEN

Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.


Asunto(s)
Hipotálamo , Interleucina-17 , Proteína Relacionada con Agouti/metabolismo , Animales , Ingestión de Alimentos , Humanos , Hipotálamo/metabolismo , Ratones , Proopiomelanocortina/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1126-1137, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738810

RESUMEN

In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.


Asunto(s)
Perfilación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Inflamación/genética , Obesidad/genética , Receptores de Quimiocina/genética , Animales , Astrocitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Hipotálamo/citología , Inflamación/etiología , Inflamación/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Neuronas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptores de Quimiocina/metabolismo
6.
Brain Behav Immun ; 78: 78-90, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30660601

RESUMEN

Obesity-associated hypothalamic inflammation plays an important role in the development of defective neuronal control of whole body energy balance. Because dietary fats are the main triggers of hypothalamic inflammation, we hypothesized that CD1, a lipid-presenting protein, may be involved in the hypothalamic inflammatory response in obesity. Here, we show that early after the introduction of a high-fat diet, CD1 expressing cells gradually appear in the mediobasal hypothalamus. The inhibition of hypothalamic CD1 reduces diet-induced hypothalamic inflammation and rescues the obese and glucose-intolerance phenotype of mice fed a high-fat diet. Conversely, the chemical activation of hypothalamic CD1 further increases diet-induced obesity and hypothalamic inflammation. A bioinformatics analysis revealed that hypothalamic CD1 correlates with transcripts encoding for proteins known to be involved in diet-induced hypothalamic abnormalities in obesity. Thus, CD1 is involved in at least part of the hypothalamic inflammatory response in diet-induced obesity and its modulation affects the body mass phenotype of mice.


Asunto(s)
Antígenos CD1/metabolismo , Hipotálamo/inmunología , Obesidad/metabolismo , Animales , Antígenos CD1/inmunología , Biología Computacional/métodos , Dieta Alta en Grasa , Grasas de la Dieta , Metabolismo Energético , Inflamación/metabolismo , Linfocitos/metabolismo , Masculino , Ratones , Obesidad/inmunología
7.
Mol Cell Endocrinol ; 460: 238-245, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760600

RESUMEN

Hypothalamic dysfunction is a common feature of experimental obesity. Studies have identified at least three mechanisms involved in the development of hypothalamic neuronal defects in diet-induced obesity: i, inflammation; ii, endoplasmic reticulum stress; and iii, mitochondrial abnormalities. However, which of these mechanisms is activated earliest in response to the consumption of large portions of dietary fats is currently unknown. Here, we used immunoblot, real-time PCR, mitochondrial respiration assays and transmission electron microscopy to evaluate markers of inflammation, endoplasmic reticulum stress and mitochondrial abnormalities in the hypothalamus of Swiss mice fed a high-fat diet for up to seven days. In the present study we show that the expression of the inflammatory chemokine fractalkine was the earliest event detected. Its hypothalamic expression increased as early as 3 h after the introduction of a high-fat diet and was followed by the increase of cytokines. GPR78, an endoplasmic reticulum chaperone, was increased 6 h after the introduction of a high-fat diet, however the actual triggering of endoplasmic reticulum stress was only detected three days later, when IRE-1α was increased. Mitofusin-2, a protein involved in mitochondrial fusion and tethering of mitochondria to the endoplasmic reticulum, underwent a transient reduction 24 h after the introduction of a high-fat diet and then increased after seven days. There were no changes in hypothalamic mitochondrial respiration during the experimental period, however there were reductions in mitochondria/endoplasmic reticulum contact sites, beginning three days after the introduction of a high-fat diet. The inhibition of TNF-α with infliximab resulted in the normalization of mitofusin-2 levels 24 h after the introduction of the diet. Thus, inflammation is the earliest mechanism activated in the hypothalamus after the introduction of a high-fat diet and may play a mechanistic role in the development of mitochondrial abnormalities in diet-induced obesity.


Asunto(s)
Hipotálamo/patología , Inflamación/patología , Mitocondrias/patología , Obesidad/patología , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/metabolismo , Hipotálamo/ultraestructura , Ratones , Mitocondrias/ultraestructura , Pruebas de Neutralización , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Neuroinflammation ; 14(1): 178, 2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28865476

RESUMEN

BACKGROUND: The consumption of large amounts of dietary fats can trigger an inflammatory response in the hypothalamus and contribute to the dysfunctional control of caloric intake and energy expenditure commonly present in obesity. The objective of this study was to identify chemokine-related transcripts that could be involved in the early stages of diet-induced hypothalamic inflammation. METHODS: We used immunoblot, PCR array, real-time PCR, immunofluorescence staining, glucose and insulin tolerance tests, and determination of general metabolic parameters to evaluate markers of inflammation, body mass variation, and glucose tolerance in mice fed a high-fat diet. RESULTS: Using a real-time PCR array, we identified leukemia inhibitory factor as a chemokine/cytokine undergoing a rapid increase in the hypothalamus of obesity-resistant and a rapid decrease in the hypothalamus of obesity-prone mice fed a high-fat diet for 1 day. We hypothesized that the increased hypothalamic expression of leukemia inhibitory factor could contribute to the protective phenotype of obesity-resistant mice. To test this hypothesis, we immunoneutralized hypothalamic leukemia inhibitory factor and evaluated inflammatory and metabolic parameters. The immunoneutralization of leukemia inhibitory factor in the hypothalamus of obesity-resistant mice resulted in increased body mass gain and increased adiposity. Body mass gain was mostly due to increased caloric intake and reduced spontaneous physical activity. This modification in the phenotype was accompanied by increased expression of inflammatory cytokines in the hypothalamus. In addition, the inhibition of hypothalamic leukemia inhibitory factor was accompanied by glucose intolerance and insulin resistance. CONCLUSION: Hypothalamic expression of leukemia inhibitory factor may protect mice from the development of diet-induced obesity; the inhibition of this protein in the hypothalamus transforms obesity-resistant into obesity-prone mice.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Factor Inhibidor de Leucemia/antagonistas & inhibidores , Factor Inhibidor de Leucemia/biosíntesis , Obesidad/metabolismo , Fenotipo , Animales , Ingestión de Energía/efectos de los fármacos , Ingestión de Energía/fisiología , Hipotálamo/efectos de los fármacos , Inmunoglobulina G/farmacología , Masculino , Ratones , Obesidad/etiología , Distribución Aleatoria
9.
J Neuroinflammation ; 14(1): 91, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446241

RESUMEN

BACKGROUND: The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. METHODS: Male Swiss (6-weeks old), were fed with a high fat diet (HFD, 60% of kcal from fat) for 4 weeks. Next, mice underwent stereotaxic surgery to place an indwelling cannula into the right lateral ventricle. intracerebroventricular (icv)-cannulated mice were treated twice a day for 6 days with 2.0 µL saline or GPR40 and GPR120 agonists: GW9508, TUG1197, or TUG905 (2.0 µL, 1.0 mM). Food intake and body mass were measured during the treatment period. At the end of the experiment, the hypothalamus was collected for real-time PCR analysis. RESULTS: We show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508, a non-specific agonist for both receptors, reduced energy efficiency and the expression of inflammatory genes in the hypothalamus. Reducing GPR120 hypothalamic expression using a lentivirus-based approach resulted in the loss of the anti-inflammatory effect of GW9508 and increased energy efficiency. Intracerebroventricular treatment with the GPR120- and GPR40-specific agonists TUG1197 and TUG905, respectively, resulted in milder effects than those produced by GW9508. CONCLUSIONS: GPR120 and GPR40 act in concert in the hypothalamus to reduce energy efficiency and regulate the inflammation associated with obesity. The combined activation of both receptors in the hypothalamus results in better metabolic outcomes than the isolated activation of either receptor alone.


Asunto(s)
Metabolismo Energético/fisiología , Ácidos Grasos Insaturados/biosíntesis , Homeostasis/fisiología , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Línea Celular , Ácidos Grasos Insaturados/genética , Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Microglía/metabolismo , Obesidad/genética , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética
10.
Sci Rep ; 6: 29290, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27373214

RESUMEN

Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of ß-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of ß-endorphin levels, is the earliest hypothalamic defect leading to obesity.


Asunto(s)
Hipotálamo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , betaendorfina/metabolismo , Adolescente , Adulto , Animales , Dieta , Grasas de la Dieta/metabolismo , Ingestión de Energía , Humanos , Hipotálamo/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Obesos , Obesidad/inmunología , Proopiomelanocortina/inmunología , Ratas , Ratas Wistar , Adulto Joven
11.
Nutrition ; 32(7-8): 863-70, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27138107

RESUMEN

OBJECTIVE: This study aimed to investigate the effect of Passiflora edulis peel flour (PEPF) intake on hypothalamic neuropeptides messenger RNA expression, insulin sensitivity, and other metabolic parameters in Sprague-Dawley rats fed a high-fat (HF) diet. METHODS: Sprague-Dawley rats were divided in 3 groups: a control group, fed on a normal fat diet; a HF group, fed on a high-fat diet (35% fat [w/w]); and a high-fat Passiflora flour (HFPF) group, fed on a HF diet containing PEPF. The rats from the HFPF group as well as the HF group were kept on an HF diet for the first 4 wk to induce metabolic conditions related to obesity. Then the HFPF group was switched to a HF diet containing PEPF for additional 6 wk. Other groups were kept on normal-fat and HF diet without addition of PEPF during the whole period of experiment. The glucose tolerance and insulin sensitivity were evaluated through the glucose tolerance test (GTT) and the insulin tolerance test (ITT). Gut hormones and adipokines were measured through an immunoassay. The hypothalamic neuropeptides expression was assessed by real-time polymerase chain reaction. RESULTS: The PEPF intake increased the hypothalamic cocaine- and amphetamine-regulated transcript expression (CART) (P < 0.05), counteracted cumulative body weight gain (P < 0.001), decreased adiposity (P < 0.05) and leptin level (P < 0.01), whereas increased adiponectin (P < 0.01), glucose-dependent insulinotropic polypeptide (P < 0.01), and glucagon-like peptide-1 (GLP-1) (P < 0.001) improved the insulin sensitivity in diet-induced obesity rats by increasing the kITT (glucose disappearance rate) (P < 0.01), which was calculated during the ITT. Other gut hormones (peptide tyrosine tyrosine, pancreatic polypeptide, and amylin) and interleukins (IL) (IL-6, tumor necrosis factor-α, IL-1ß, and monocyte chemoattractant protein-1) were not changed by the PEPF intake. CONCLUSION: Our findings provide a further understanding of how the PEPF works as a dietary component to improve glucose homeostasis and demonstrate a molecular mechanism that may increase satiety by PEPF in diet-induced obesity.


Asunto(s)
Dieta Alta en Grasa , Hipotálamo/metabolismo , Incretinas/metabolismo , Resistencia a la Insulina/fisiología , Neuropéptidos/metabolismo , Passiflora , Adiponectina/metabolismo , Animales , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Hipotálamo/efectos de los fármacos , Leptina/metabolismo , Masculino , Ratones , Modelos Animales , Neuropéptidos/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Ratas Sprague-Dawley
12.
Diabetes ; 65(3): 673-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26512023

RESUMEN

Apoptosis of hypothalamic neurons is believed to play an important role in the development and perpetuation of obesity. Similar to the hippocampus, the hypothalamus presents constitutive and stimulated neurogenesis, suggesting that obesity-associated hypothalamic dysfunction can be repaired. Here, we explored the hypothesis that n-3 polyunsaturated fatty acids (PUFAs) induce hypothalamic neurogenesis. Both in the diet and injected directly into the hypothalamus, PUFAs were capable of increasing hypothalamic neurogenesis to levels similar or superior to the effect of brain-derived neurotrophic factor (BDNF). Most of the neurogenic activity induced by PUFAs resulted in increased numbers of proopiomelanocortin but not NPY neurons and was accompanied by increased expression of BDNF and G-protein-coupled receptor 40 (GPR40). The inhibition of GPR40 was capable of reducing the neurogenic effect of a PUFA, while the inhibition of BDNF resulted in the reduction of global hypothalamic cell. Thus, PUFAs emerge as a potential dietary approach to correct obesity-associated hypothalamic neuronal loss.


Asunto(s)
Glucemia/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Hipotálamo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Animales , Glucemia/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Prueba de Tolerancia a la Glucosa , Hipotálamo/citología , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Neuropéptido Y , Proopiomelanocortina/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Diabetes ; 63(11): 3770-84, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24947351

RESUMEN

Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.


Asunto(s)
Quimiocina CX3CL1/metabolismo , Hipotálamo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Animales , Quimiocina CX3CL1/genética , Dieta Alta en Grasa/efectos adversos , Citometría de Flujo , Hipotálamo/inmunología , Immunoblotting , Inflamación/etiología , Inflamación/inmunología , Masculino , Ratones , Obesidad/etiología , Obesidad/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Receptor Toll-Like 4/metabolismo
14.
Endocrinology ; 155(7): 2456-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24797627

RESUMEN

Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.


Asunto(s)
Peso Corporal/fisiología , Ayuno/fisiología , Conducta Alimentaria/fisiología , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/fisiología , Expresión Génica , Immunoblotting , Leptina/farmacología , Metabolismo de los Lípidos/fisiología , Masculino , Mitocondrias Musculares/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Factores de Tiempo
15.
Br J Nutr ; 110(3): 447-55, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23415177

RESUMEN

The peel of the native Brazilian fruit jaboticaba is rich in anthocyanins, which are known for their anti-obesity effects in animal models. The aim of the present study was to evaluate the effects of freeze-dried jaboticaba peel powder (FDJPP) on a number of metabolic parameters in a model of diet-induced obesity. Mice (n 8 per group) were initially fed on a high-fat diet (HFD, 35% w/w) for 4 weeks and then switched to a HFD supplemented with FDJPP (1, 2 or 4% w/w) for an additional 6 weeks. Energy intake, weight loss, glucose tolerance, insulin resistance and lipid profile were determined, and the results were evaluated using ANOVA and Tukey's tests. The FDJPP exerted no protective effect on HFD-induced weight gain, hyperleptinaemia and glucose intolerance. However, the supplementation was effective to reduce insulin resistance, as evidenced in the insulin tolerance test, and subsequently confirmed by improved signal transduction through the insulin receptor/insulin receptor substrate-1/Akt/forkhead box protein pathway and by the attenuation of HFD-induced inflammation in the liver, verified by lower expressions of IL-1b and IL-6 and decreased phosphorylated IkB-a protein levels in all jaboticaba-treated mice. These results suggest that FDJPP may exert a protective role against obesity-associated insulin resistance.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Insulina/metabolismo , Myrtaceae , Obesidad/tratamiento farmacológico , Fitoterapia , Preparaciones de Plantas/uso terapéutico , Análisis de Varianza , Animales , Antocianinas/farmacología , Antocianinas/uso terapéutico , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Suplementos Dietéticos , Frutas , Intolerancia a la Glucosa , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Leptina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Myrtaceae/química , Obesidad/etiología , Obesidad/metabolismo , Preparaciones de Plantas/farmacología , Polvos , Receptor de Insulina/metabolismo , Transducción de Señal , Aumento de Peso/efectos de los fármacos
16.
Endocrinology ; 153(8): 3633-45, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22585831

RESUMEN

Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through mechanisms that are not completely understood. Recent studies demonstrated that the activation of hypothalamic 5'-AMP-activated protein kinase (AMPK) controls dynamic fluctuations in hepatic glucose production. Thus, the present study was designed to investigate whether hypothalamic AMPK activation by fructose would mediate increased gluconeogenesis. Both ip and intracerebroventricular (icv) fructose treatment stimulated hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in AMPK phosphorylation by icv fructose was observed in the lateral hypothalamus as well as in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 5-amino-imidazole-4-carboxamide-1-ß-d-ribofuranoside treatment. Hypothalamic AMPK inhibition with icv injection of compound C or with injection of a small interfering RNA targeted to AMPKα2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip fructose. We also found that fructose increased corticosterone levels through a mechanism that is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the data presented herein support the hypothesis that fructose-induced hypothalamic AMPK activation stimulates hepatic gluconeogenesis by increasing corticosterone levels.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Corticosterona/metabolismo , Fructosa/farmacología , Gluconeogénesis/efectos de los fármacos , Hipotálamo/metabolismo , Hígado/metabolismo , Animales , Inmunoprecipitación de Cromatina , Activación Enzimática/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Hipotálamo/efectos de los fármacos , Immunoblotting , Hígado/efectos de los fármacos , Masculino , Fosfoenolpiruvato Carboxiquinasa (ATP) , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar
17.
Amino Acids ; 42(6): 2403-10, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21818562

RESUMEN

Taurine is known to modulate a number of metabolic parameters such as insulin secretion and action and blood cholesterol levels. Recent data have suggested that taurine can also reduce body adiposity in C. elegans and in rodents. Since body adiposity is mostly regulated by insulin-responsive hypothalamic neurons involved in the control of feeding and thermogenesis, we hypothesized that some of the activity of taurine in the control of body fat would be exerted through a direct action in the hypothalamus. Here, we show that the intracerebroventricular injection of an acute dose of taurine reduces food intake and locomotor activity, and activates signal transduction through the Akt/FOXO1, JAK2/STAT3 and mTOR/AMPK/ACC signaling pathways. These effects are accompanied by the modulation of expression of NPY. In addition, taurine can enhance the anorexigenic action of insulin. Thus, the aminoacid, taurine, exerts a potent anorexigenic action in the hypothalamus and enhances the effect of insulin on the control of food intake.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Taurina/administración & dosificación , Quinasas de la Proteína-Quinasa Activada por el AMP , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Sinergismo Farmacológico , Ingestión de Alimentos/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica/fisiología , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Insulina/administración & dosificación , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
18.
J Cell Biochem ; 113(4): 1182-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22095528

RESUMEN

Glutamate acts in the hypothalamus promoting region-, and cell-dependent effects on feeding. Part of these effects are mediated by NMDA receptors, which are up regulated in conditions known to promote increased food intake and thermogenesis, such as exposure to cold and consumption of highly caloric diets. Here, we hypothesized that at least part of the effect of glutamate on hypothalamic control of energy homeostasis would depend on the control of neurotransmitter expression and JAK2 signaling. The expression of NMDA receptors was co-localized to NPY/AgRP, POMC, CRH, and MCH but not to TRH and orexin neurons of the hypothalamus. The acute intracerebroventricular injection of glutamate promoted a dose-dependent increase in JAK2 tyrosine phosphorylation. In obese rats, 5 days intracerebroventricular treatment with glutamate resulted in the reduction of food intake, accompanied by a reduction of spontaneous motility and reduction of body mass, without affecting oxygen consumption. The reduction of food intake and body mass were partially restrained by the inhibition of JAK2. In addition, glutamate produced an increased hypothalamic expression of NPY, POMC, CART, MCH, orexin, CRH, and TRH, and the reduction of AgRP. All these effects on neurotransmitters were hindered by the inhibition of JAK2. Thus, the intracerebroventricular injection of glutamate results in the reduction of body mass through a mechanism, at least in part, dependent on JAK2, and on the broad regulation of neurotransmitter expression. These effects are not impaired by obesity, which suggest that glutamate actions in the hypothalamus may be pharmacologically explored to treat this disease.


Asunto(s)
Glutamatos/farmacología , Hipotálamo/efectos de los fármacos , Janus Quinasa 2/metabolismo , Pérdida de Peso/efectos de los fármacos , Animales , Western Blotting , Conducta Alimentaria/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Janus Quinasa 2/química , Leptina/sangre , Masculino , Fosforilación , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Tirosina/metabolismo
19.
Endocrinology ; 151(2): 683-94, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19996183

RESUMEN

TNFalpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNFalpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNFalpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNFalpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNFalpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNFalpha action to be important mediator of the wastage syndrome in cachexia.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Caquexia/fisiopatología , Hipotálamo/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Síndrome Debilitante/fisiopatología , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/fisiología , Animales , Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Peso Corporal , Caquexia/tratamiento farmacológico , Calorimetría Indirecta , Desnervación , Fármacos Gastrointestinales/uso terapéutico , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiopatología , Infliximab , Masculino , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa , Proopiomelanocortina/genética , Ratas , Ratas Wistar , Síndrome Debilitante/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA