Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 73(9): 3030-3043, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560190

RESUMEN

Triacylglycerols (TAGs) are the major component of plant storage lipids such as oils. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step of the Kennedy pathway, and is mainly responsible for plant oil accumulation. We previously found that the activity of Vernonia DGAT1 was distinctively higher than that of Arabidopsis and soybean DGAT1 in a yeast microsome assay. In this study, the DGAT1 cDNAs of Arabidopsis, Vernonia, soybean, and castor bean were introduced into Arabidopsis. All Vernonia DGAT1-expressing lines showed a significantly higher oil content (49% mean increase compared with the wild-type) followed by soybean and castor bean. Most Arabidopsis DGAT1-overexpressing lines did not show a significant increase. In addition to these four DGAT1 genes, sunflower, Jatropha, and sesame DGAT1 genes were introduced into a TAG biosynthesis-defective yeast mutant. In the yeast expression culture, DGAT1s from Arabidopsis, castor bean, and soybean only slightly increased the TAG content; however, DGAT1s from Vernonia, sunflower, Jatropha, and sesame increased TAG content >10-fold more than the former three DGAT1s. Three amino acid residues were characteristically common in the latter four DGAT1s. Using soybean DGAT1, these amino acid substitutions were created by site-directed mutagenesis and substantially increased the TAG content.


Asunto(s)
Arabidopsis , Diacilglicerol O-Acetiltransferasa , Aceites de Plantas , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Diglicéridos , Ricinus/genética , Ricinus/metabolismo , Saccharomyces cerevisiae , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Triglicéridos/metabolismo
2.
Int J Phytoremediation ; 24(11): 1133-1140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34870525

RESUMEN

The impact of gradually increased soil levels of copper (Cu) and cadmium (Cd) on the medicinal plant, Prosopis farcta, irrigated with metal-enriched water was determined. Plants were treated with 2.54, 5.08, 10.16, and 20.32 µg mL-1 for Cu2+ and 6.13, 12.26, 24.52, and 49 µg mL-1 for Cd2+. The rate of phytoremediation was measured by bioconcentration factor (BCF) and the relative bioconcentration factor (RBCF). The movement of metal ions from roots to shoots was calculated as the Translocation Factor (TF). The exposure of plants to Cd or Cu decreased plant growth and increased Cd and Cu concentration in their shoots and roots. The weight of both shoots and roots decreased linearly with the increase of Cu and Cd contents in roots and shoots. Cd was more toxic than Cu as expected. The water content of shoots and roots decreased linearly as heavy metal levels increased. Prosopis farcta can take up Cu and Cd in both Cu- and Cd-contaminated soils but was more capable for transporting Cd from roots to shoots rather than Cu although more Cu is taken up by roots. Prosopis farcta is a natural accumulator of Cu and Cd and can be used in phytoremediation.CONCISE NOVEL ASPECTS OF THIS STUDYThis is the first report to show that the medicinal plant Prosopis farcta is an accumulator for Cu and Cd.This was determined by gradual addition of the metals to the soil via irrigation by heavy metal-polluted water which can provide an opportunity for the plant to develop a metal-resistance mechanism.Choosing suitable plant species for heavy metal accumulation is a critical step for successful phytoremediation of heavy metal pollutants.CORE IDEASProsopis farcta is of interest as a medicinal plant.P. farcta can take up Cu and Cd in both Cu- and Cd-contaminated soils.P. farcta transports more Cd from roots to shoots but more Cu is taken up.


Asunto(s)
Metales Pesados , Prosopis , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Cobre , Metales Pesados/análisis , Raíces de Plantas/química , Plantas , Suelo , Contaminantes del Suelo/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA