Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioresour Technol ; 393: 130021, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979887

RESUMEN

The application of soil infiltration systems (SISs) in rural domestic sewage (RDS) is limited due to suboptimal denitrification resulting from factors such as low C/N (<5). This study introduced filler-enhanced SISs and investigated parameter impacts on pollutant removal efficiency and greenhouse gas (GHG) emission reduction. The results showed that Mn sand-pyrite SISs, with hydraulic load ratios of 0.003 m3/m2·h and dry-wet ratios of 3:1, achieved excellent removal efficiency of COD (92.7 %), NH4+-N (95.8 %), and TN (76.4 %). Moreover, N2O and CH4 emission flux were 0.046 and 0.019 mg/m2·d, respectively. X-ray photoelectron spectroscopy showed that the relative concentrations of Mn(Ⅱ) in Mn sand and Fe(Ⅲ) and SO42- in pyrite increased after the experiment. High-throughput sequencing indicated that denitrification was mainly performed by Thiobacillus. This study demonstrated that RDS treatment using the enhanced SIS resulted in efficient denitrification and GHG reduction.


Asunto(s)
Gases de Efecto Invernadero , Hierro , Suelo , Sulfuros , Desnitrificación , Compuestos Férricos , Manganeso , Nitrógeno/química , Aguas del Alcantarillado , Suelo/química
2.
J Hazard Mater ; 442: 130001, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152543

RESUMEN

Recalcitrant and toxicological membrane-making wastewater displays negative impacts on environment, and this is difficult to treat efficiently using conventional hydrolytic acidification. In this study, a novel electro-assisted biological reactor with micro-aerobic cathode (EABR-MAC) was developed to improve the biodegradation and ammonification of N, N-dimethylformamide (DMF) in membrane-making wastewater, and the metabolic mechanism using metagenomic sequencing as comprehensively illustrated. The results showed that EABR-MAC significantly improved the ammonification of refractory organonitrogen and promoted DMF oxidative degradation by driving the electron transferred to the cathode. Additionally, the inhibition rates of oxygen uptake rate and nitrification in EABR-MAC were both lower under different cathode aeration frequency conditions. Microbial community analysis indicated that the functional fermentation bacteria and exoelectrogens, which were correlated with COD removal, ammonification, and detoxification, were significantly enriched upon electrostimulation, and the positive biological connections increased to form highly connected communities instead of competition. The functional genes revealed that EABR-MAC forcefully intervened with the metabolic pathway, so that DMF converted to formamide and ammonia by oxidative demethylation and formamide hydrolysis. The results of this study provide a promising strategy for efficient conversion of organonitrogen into ammonia nitrogen, and offer a new insight into the effects of electrostimulation on microbial metabolism.


Asunto(s)
Dimetilformamida , Aguas Residuales , Amoníaco/metabolismo , Reactores Biológicos , Nitrificación , Nitrógeno/metabolismo , Electrodos , Oxígeno , Desmetilación , Desnitrificación
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(3): 704-8, 2014 Mar.
Artículo en Chino | MEDLINE | ID: mdl-25208396

RESUMEN

Petrochemical wastewater is of huge quantity released during the production and complicated contaminants of petrochemical wastewater will have immense negative impact on ecology environment. Three-dimensional excitation-emission matrix fluorescence(3D-EEM) was used to investigate the characteristic fluorescence of influent and effluent from each processing unit of Hydrolysis-acidification +A/O+ Contact-oxidation Process in a typical petrochemical wastewater treatment plant . The results showed that there were 4 fluorescence peaks named Peak A, Peak B, Peak D, Peak E in the spectrum chart of influent, they are around lambda(ex/lambda(em) = 220/300, 225/340, 270/300, 275/340 nm, the primary source of fluorescence organic matter(FOM) is industrial wastewater. The fluorescence intensity of each fluorescence peak was decreased, while location was unchanged in the effluent of Hydrolysis-acidification. Peak C appeared from the effluent of anaerobic tank at lambda(ex)/lambda(em) = 250/425 nm, then the fluorescence intensity of Peak C was enhanced in the effluent of aerobic tank. Peak A disappeared from the effluent of secondary sedimentation tank. The spectrum chart of the wastewater had no obvious variation after secondary sedimentation tank. The removal rate of FOM was expressed with the degradation percentage of the fluorescence intensity, the total FOM was reduced by 92.0% after processing, and the removal rate of the FOM fluoresce around Peak A, Peak B, Peak D, Peak E were 100.0%, 91.2%, 80.3%, 92.0% respectively. A volatile I(Peak B)/I(Peak E) value of influent but a relatively stable value of effluent demonstrated that the wastewater treatment plant operated steadily and the process has higher capacity in resistance to shock loading.


Asunto(s)
Compuestos Orgánicos , Eliminación de Residuos Líquidos , Industria Procesadora y de Extracción , Petróleo , Espectrometría de Fluorescencia , Aguas Residuales
4.
Phytother Res ; 28(3): 334-47, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23722570

RESUMEN

Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China.


Asunto(s)
Medicamentos Herbarios Chinos/clasificación , Medicamentos Herbarios Chinos/toxicidad , Materia Medica/clasificación , Materia Medica/toxicidad , Animales , China , Medicamentos Herbarios Chinos/farmacología , Interacciones de Hierba-Droga , Humanos , Materia Medica/farmacología , Medicina Tradicional China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA