Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomaterials ; 232: 119730, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31918224

RESUMEN

Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease that results in synovitis, cartilage destruction, and even loss of joint function. The frequent and long-term administration of anti-rheumatic drugs often leads to obvious adverse effects and patient non-compliance. Therefore, to specifically deliver dexamethasone (Dex) to inflamed joints and reduce the administration frequency of Dex, we developed Dex-loaded reactive oxygen species (ROS)-responsive nanoparticles (Dex/Oxi-αCD NPs) and folic acid (FA) modified Dex/Oxi-αCD NPs (Dex/FA-Oxi-αCD NPs) and validated their anti-inflammatory effect in vitro and in vivo. In vitro study demonstrated that these NPs can be effectively internalized by activated macrophages and the released Dex from NPs significantly downregulated the expression of iRhom2, TNF-α, and BAFF in activated Raw264.7. In vivo experiments revealed that Dex/Oxi-αCD NPs, especially Dex/FA-Oxi-αCD NPs significantly accumulated at inflamed joints in collagen-induced arthritis (CIA) mice and alleviated the joint swelling and cartilage destruction. Importantly, the expression of iRhom2, TNF-α, and BAFF in the joint was inhibited by intravenous injection of Dex/Oxi-αCD NPs and Dex/FA-Oxi-αCD NPs. Collectively, our data revealed that Dex-loaded ROS-responsive NPs can target inflamed joints and attenuate arthritis, and the 'iRhom2-TNF-α-BAFF' pathway plays an important role in the treatment of RA with the NPs, suggesting that this pathway may be a novel target for RA therapy.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Nanopartículas , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Proteínas Portadoras , Dexametasona , Ratones , Especies Reactivas de Oxígeno , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA