Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 240: 115924, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142499

RESUMEN

The quality standards for Andrographis paniculata, a widely used medicinal herb, exhibited significant variations across different pharmacopeias. In this study, we compared the HPLC content determination methods and total lactone content of A. paniculata samples from different regions, as specified in the Chinese (CP), United States (USP), European (EP), Thai (TP), and Indian pharmacopeias (IP), as well as the Hong Kong Chinese Materia Medica Standards (HK). We aimed to assess the differences and similarities among these pharmacopeias and harmonized international quality standards for A. paniculata. The analysis revealed variations in sample preparation, liquid chromatographic conditions, fingerprint profiles, and total lactone content among the different pharmacopeias. Specifically, the CP and HK methods exhibited superior sample preparation and chromatographic separation. Further comparing the content of 20 A. paniculata samples with the CP, USP, EP and HK methods showed consistent determinations for the same components, indicating similar detection capabilities. The discrepancies in total lactone content primarily stemmed from differences in the number and types of detected compounds. Moreover, the acceptance criteria exhibited a stringency in the order CP > HK > EP > USP. In conclusion, this comparison analysis of content determination in CP, USP, HK, EP, TP and IP provided a scientific foundation for the international standardization and trade regulations of A. paniculata. It also served as a valuable reference for the development of international quality standards for other medicinal herbs, facilitating the harmonization of global pharmaceutical standards.


Asunto(s)
Andrographis , Diterpenos , Plantas Medicinales , Andrographis paniculata , Andrographis/química , Diterpenos/análisis , Plantas Medicinales/química , Lactonas , Estándares de Referencia , Extractos Vegetales/química
2.
Acta Pharm Sin B ; 13(1): 271-283, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815054

RESUMEN

Astragalosides are the main active constituents of traditional Chinese medicine Huang-Qi, of which cycloastragenol-type glycosides are the most typical and major bioactive compounds. This kind of compounds exhibit various biological functions including cardiovascular protective, neuroprotective, etc. Owing to the limitations of natural sources and the difficulties encountered in chemical synthesis, re-engineering of biosynthetic machinery will offer an alternative and promising approach to producing astragalosides. However, the biosynthetic pathway for astragalosides remains elusive due to their complex structures and numerous reaction types and steps. Herein, guided by transcriptome and phylogenetic analyses, a cycloartenol synthase and four glycosyltransferases catalyzing the committed steps in the biosynthesis of such bioactive astragalosides were functionally characterized from Astragalus membranaceus. AmCAS1, the first reported cycloartenol synthase from Astragalus genus, is capable of catalyzing the formation of cycloartenol; AmUGT15, AmUGT14, AmUGT13, and AmUGT7 are four glycosyltransferases biochemically characterized to catalyze 3-O-xylosylation, 3-O-glucosylation, 25-O-glucosylation/O-xylosylation and 2'-O-glucosylation of cycloastragenol glycosides, respectively. These findings not only clarified the crucial enzymes for the biosynthesis and the molecular basis for the structural diversity of astragalosides in Astragalus plants, also paved the way for further completely deciphering the biosynthetic pathway and constructing an artificial pathway for their efficient production.

3.
Zhongguo Zhong Yao Za Zhi ; 47(22): 5978-5990, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36471923

RESUMEN

Peptide is a compound consisting of 2-50 amino acids, which is intermediate between small molecule and protein. It is characterized by a variety of biological activities, easy absorption, strong specific targeting, and few side effects and has become one of the hotspots in biomedical research in recent years. Chinese medicine contains a large number of peptides. The traditional processing methods such as decocting and boiling can effectively boost peptides to exert their due biological activities. At present, however, the research on Chinese medicinal components in laboratory generally employs high-concentration alcohol extraction method, which may cause the peptides to be ignored in many natural Chinese medicines. Substantial studies have revealed that the peptides in Chinese medicine are important material basis responsible for the traditional efficacy. Based on years of research and literature retrieval, this study put forward the concept of "traditional Chinese medicine(TCM)-peptides", referring to the components consisting of two or more amino acids with molecular weight between small molecules and proteins that can express the efficacy of Chinese medicine. Furthermore, this study also summarized the extraction and separation of TCM-peptides, and structure determination methods and routes, predicted the research prospect of modern research methods of TCM-peptides based on "holistic view" and big data. The artificial intelligence prediction was combined with high-throughput screening technology to improve the discovery efficiency and accuracy of TCM-peptides, and holographic images between TCM-peptides and biological targets were established to provide references for the innovative drug design and related health product development of TCM-peptides based on TCM theories.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Inteligencia Artificial , Medicamentos Herbarios Chinos/química , Proyectos de Investigación , Péptidos , Proteínas , Aminoácidos
4.
Front Cell Infect Microbiol ; 12: 826450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959369

RESUMEN

Background and purpose: Bacterial biofilm infections are major health issues as the infections are highly tolerant to antibiotics and host immune defenses. Appropriate biofilm models are important to develop and improve to make progress in future biofilm research. Here, we investigated the ability of PF hydrogel material to facilitate the development and study of Pseudomonas aeruginosa biofilms in vitro and in vivo. Methods: Wild-type P. aeruginosa PAO1 bacteria were embedded in PF hydrogel situated in vitro or in vivo, and the following aspects were investigated: 1) biofilm development; 2) host immune response and its effect on the bacteria; and 3) efficacy of antibiotic treatment. Results: Microscopy demonstrated that P. aeruginosa developed typical biofilms inside the PF hydrogels in vitro and in mouse peritoneal cavities where the PF hydrogels were infiltrated excessively by polymorphonuclear leukocytes (PMNs). The bacteria remained at a level of ~106 colony-forming unit (CFU)/hydrogel for 7 days, indicating that the PMNs could not eradicate the biofilm bacteria. ß-Lactam or aminoglycoside mono treatment at 64× minimal inhibitory concentration (MIC) killed all bacteria in day 0 in vitro biofilms, but not in day 1 and older biofilms, even at a concentration of 256× MIC. Combination treatment with the antibiotics at 256× MIC completely killed the bacteria in day 1 in vitro biofilms, and combination treatment in most of the cases showed significantly better bactericidal effects than monotherapies. However, in the case of the established in vivo biofilms, the mono and combination antibiotic treatments did not efficiently kill the bacteria. Conclusion: Our results indicate that the bacteria formed typical biofilms in PF hydrogel in vitro and in vivo and that the biofilm bacteria were tolerant against antibiotics and host immunity. The PF hydrogel biofilm model is simple and easy to fabricate and highly reproducible with various application possibilities. We conclude that the PF hydrogel biofilm model is a new platform that will facilitate progress in future biofilm investigations, as well as studies of the efficacy of new potential medicine against biofilm infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Antibacterianos/farmacología , Biopelículas , Hidrogeles/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Fagocitos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-35154350

RESUMEN

Tamoxifen is an effective drug for treating patients with advanced estrogen receptor-positive (ER+) breast cancer (BC), but not for all ER + BC patients. Drug tolerance is the biggest obstacle. In this study, we designed an experiment to investigate whether paeoniflorin affects the ER + BC cell's sensitivity to tamoxifen in the T47D and MCF-7 cell lines. Herein, we found that paeoniflorin inhibited cell proliferation without inducing apoptosis. However, it enhanced tamoxifen-induced apoptosis in both cell lines. Immunoblotting revealed that paeoniflorin significantly increased the already elevated Bax/Bcl2 protein expression ratio and the caspase 3 activity levels, both induced by tamoxifen. Paeoniflorin was also found to increase SIRT4 expression, and deletion of SIRT4 could significantly reverse the inhibition of cell proliferation induced by paeoniflorin and significantly decrease paeoniflorin-enhanced apoptosis induced by tamoxifen. Moreover, protein expression detection revealed that paeoniflorin enhanced the tamoxifen-induced inhibition of STAT3 activation. Besides, the deletion of SIRT4 could significantly increase STAT3 activation in the T47D and MCF-7 cells. In conclusion, paeoniflorin suppressed STAT3 activation to enhance the sensitivity of ER-positive breast cancer cells to tamoxifen through promoting SIRT4 expression.

6.
Molecules ; 28(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36615496

RESUMEN

Plants containing podophyllotoxin and its analogues have been used as folk medicines for centuries. The characteristic chemical structures and strong biological activities of this class of compounds attracted attention worldwide. Currently, more than ninety natural podophyllotoxins were isolated, and structure modifications of these molecules were performed to afford a variety of derivatives, which offered optimized anti-tumor activity. This review summarized up to date reports on natural occurring podophyllotoxins and their sources, structural modification and biological activities. Special attention was paid to both structural modification and optimized antitumor activity. It was noteworthy that etoposide, a derivative of podophyllotoxin, could prevent cytokine storm caused by the recent SARS-CoV-2 viral infection.


Asunto(s)
Antineoplásicos Fitogénicos , COVID-19 , Humanos , Podofilotoxina/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Relación Estructura-Actividad , SARS-CoV-2
7.
J Food Sci ; 86(12): 5148-5158, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34755898

RESUMEN

Three peppermint oil emulsions using polyglycerol esters of fatty acids-casein (PGFE-CN), polyglycerol esters of fatty acids-sodium caseinate (PGFE-NaCN), and polyglycerol esters of fatty acids-whey protein isolate (PGFE-WPI) as emulsifiers were fabricated, and the droplet size, zeta potential, viscosity, and stability of emulsions were determined. The experimental results showed that the emulsion containing PGFE-CN has relatively smaller droplet size of 231.77 ± 0.49 nm. No significant changes were observed on the average particle size, polydispersity index and zeta potential during 4-week of storage, indicating that the emulsions kept stable against pH, salt ion, freeze-thaw, and storage. Fourier transform infrared spectrometer (FTIR) results showed that the electrostatic interaction occurs between CN and PGFE in the emulsion. The confocal laser scanning microscope (CLSM) was used to observe the microstructure of the emulsion, proving that droplets were evenly distributed throughout the aqueous phase by PGFE-CN emulsifier. The protein-stabilized emulsions can be used as potential carriers for the delivery of the lipophilic nutrients such as peppermint oil. PRACTICAL APPLICATION: PGFE-CN emulsifier can be directly added to the beverage systems containing oil or protein, such as coconut milk, peanut milk, and walnut milk. It can enhance the stability of beverage, prevent the precipitation, stratification, and oil floating, improve the homogeneity of the system and therefore extend the shelf life.


Asunto(s)
Ésteres , Proteínas de la Leche , Emulsiones , Ácidos Grasos , Glicerol , Mentha piperita , Aceites de Plantas , Polímeros
8.
J Ethnopharmacol ; 271: 113879, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33524509

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora Tonkinensis Gagnep. (STG) has been used as a folk medicine for the treatment of different cancers, especially for nasopharyngeal carcinoma, cervical cancer, liver cancer, stomach cancer, lung cancer and leukemia in China. However, the main chemical composition and anticancer mechanism of chloroform extract of STG (CESTG) were still not very clear. AIM OF STUDY: This work was carried out to investigate the anticancer effects and mechanisms of chloroform extract of STG (CESTG) on NPC. METHODS: Cultured NPC CNE1, CNE2 and Np69 cells were treated with CESTG. Cells were subjected to cell proliferation, colony-forming, migration and invasion assays. Cell cycle and apoptosis were measured by flow cytometry. Western blotting and morphological analysis were also performed. Tumor xenografts and drug treatments were made in BALB/c nude mice. The main compounds of CESTG was separated by HPLC. RESULTS: CESTG inhibited cell viability, clonal growth and induced cell apoptosis in a dose-dependent manner by silencing the PI3K/AKT/mTOR signaling pathway, which is associated with upregulation of cleaved PARP, caspase 3/7/8/9, cleaved caspase 3/7/8/9, Bax and downregulation of PARP, P-PI3K, PI3K, P-AKT, AKT, P-mTOR, mTOR and Bcl-2. In addition, CESTG arrested cell cycle in the G1/S phase, correlating with decreased levels of cyclin D1/B1, CDK 4 and 6. CESTG decreased cell migration and invasion which correlated with decreased expression of ß-catenin, vimentin and snail. CESTG significantly inhibited the tumor growth without toxicity. CONCLUSION: The results presented here suggest that CESTG could be use as a potential source of NPC therapeutic drug.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Sophora/química , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cloroformo/química , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Phytochemistry ; 184: 112659, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33461045

RESUMEN

Blumea aromatica is a traditional Chinese medicine used for treating various diseases such as rheumatoid arthritis, eczema, and pruritus. Previous studies on B. aromatica used a mass defect-filtering strategy via the ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and reported the presence of several labdane diterpenoids (LADs). To determine the actual structures of these LADs and investigate their biological activities, seven previously undescribed LADs (aromatin D-J) were isolated from the whole B. aromatica herb. The structures of these isolated compounds were characterized using high-resolution mass spectrometry and extensive 1D and 2D NMR analyses. In addition, the absolute configurations of these compounds were determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectra as well as using X-ray crystallographic analysis. All isolated compounds were evaluated for their ability to activate adenylate cyclase by measuring the levels of cyclic adenosine 3',5'-monophosphate (cAMP) in rat ventricular tissue. Aromatin E, F, and J showed moderate activities with an increase in cAMP levels by 67%, 69%, and 64%, respectively, compared with the control group.


Asunto(s)
Asteraceae , Diterpenos , Animales , Cromatografía Líquida de Alta Presión , Diterpenos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Ratas
10.
Carbohydr Polym ; 255: 117392, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436221

RESUMEN

Fructooligosaccharide was isolated from Polygonatum Cyrtonema Hua (PFOS) for the first time. Structure characterized using FT-IR, MALDI-TOF-MS, NMR, AFM, and TEM, indicated that PFOS was graminan-type fructan with a degree of polymerization ranging from 5 to 10. A murine model of lipopolysaccharide (LPS)-induced peritonitis was used to evaluate the in vivo anti-inflammatory and lung protective efficacy of PFOS. The result shown that pretreatment with PFOS (1.0 mg/mL) in peritonitis-induced mice could significantly inhibit the level of pro-inflammatory cytokines (TNF-α, IL-1ß) in serum (P < 0.001), increase mice survival rate from 12.5 % to 54 % (P < 0.05), and alleviated lung injury through ameliorating the damage of the pulmonary cellular architecture and reducing inflammatory monocyte accumulation in lung tissue. This effect of oligosaccharides could explain the traditional usage of P. cyrtonema as a tonic medicine for respiratory problems and it could be used as a potential natural ingredient with anti-inflammatory activity.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/farmacología , Pulmón/efectos de los fármacos , Oligosacáridos/farmacología , Peritonitis/tratamiento farmacológico , Polygonatum/química , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/mortalidad , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Expresión Génica , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos/administración & dosificación , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/patología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Peritonitis/inducido químicamente , Peritonitis/inmunología , Peritonitis/mortalidad , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA