Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 238(Pt 2): 117237, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793587

RESUMEN

The biofilm sequencing batch reactor (BSBR) process has higher phosphate recovery efficiency and enrichment multiple when the phosphorus load is lower, but the mechanism of phosphate enrichment at low phosphorus load remains unclear. In this study, we operated two BSBR operating under low and high phosphorus load (0.012 and 0.032 kg/(m3·d)) respectively, and used metagenomic, metatranscriptomic, and proteomics methods to analyze the community structure of the phosphorus accumulating organisms (PAOs) in the biofilm, the transcription and protein expression of key functional genes and enzymes, and the metabolism of intracellular polymers. Compared with at high phosphorus load, the BSBR at low phosphorus load have different PAOs and fewer types of PAOs, but in both cases the PAOs must have the PHA, PPX, Pst, and acs genes to become dominant. Some key differences in the metabolism of PAOs from the BSBR with different phosphorus load can be identified as follows. When the phosphorus load is low, the adenosine triphosphoric acid (ATP) and NAD(P)H in the anaerobic stage come from the TCA cycle and the second half of the EMP pathway. The key genes that are upregulated include GAPDH, PGK, ENO, ppdk in the EMP pathway, actP in acetate metabolism, phnB in polyhydroxybutyrate (PHB) synthesis, and aceA, mdh, sdhA, and IDH1 in the TCA cycle. In the meantime, the ccr gene in the PHV pathway is inhibited. As a result, the metabolism of the PAOs features low glycogen with high PHB, Pupt, Prel, and low PHV. That is, more ATP and NAD(P)H flow to phosphorus enrichment metabolism, thus allowing the highly efficient enrichment of phosphorus from low concentration phosphate thanks to the higher abundance of PAOs. The current results provide theoretical support and a new technical option for the enrichment and recovery of low concentrations of phosphate from wastewater by the BSBR process.


Asunto(s)
NAD , Proteómica , Fósforo , Biopelículas , Adenosina Trifosfato , Reactores Biológicos , Aguas del Alcantarillado
2.
Bioresour Technol ; 360: 127603, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35835418

RESUMEN

This study assessed the impact of the operating conditions of the biofilm sequencing batch reactor (BSBR) on the community structure and the growth/metabolic pathways of its polyphosphate-accumulating organisms (PAOs). There are significant difference with reference to the enhanced biological phosphorus removal (EBPR) process. The leading PAOs in BSBR generally are capable of high affinity acetate metabolism, gluconeogenesis, and low affinity phosphate transport, and have various carbon source supplementation pathways to ensure the efficient circulation of energy and reducing power. A new model of the metabolic mechanism of PAOs in the BSBR was formulated, which features low glycogen metabolism with simultaneous gluconeogenesis and glycogenolysis and differs significantly from the classic mechanism based on Candidatus_Accumulibacter and Tetrasphaera. The findings will assist the efficient recovery of low concentration phosphate in municipal wastewater.


Asunto(s)
Reactores Biológicos , Polifosfatos , Biopelículas , Metagenómica , Fósforo/metabolismo , Polifosfatos/metabolismo
3.
Sci Total Environ ; 815: 152678, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973331

RESUMEN

Biofilm sequencing batch reactor (BSBR) can achieve efficient phosphate (P) removal and enrichment, but its process performance and metabolic mechanisms for P removal and enrichment of municipal wastewater remain largely unclear. In the present study, we assessed the P removal and enrichment of municipal wastewater at influent P concentrations of 2.5 mg/L and 10 mg/L. The efficiency of P removal and enzyme activity in polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) were compared, and the growth and metabolic characteristics of dominant PAOs and GAOs at different influent P concentrations were studied with the macro-sequencing technology. The results showed that the P recovery efficiencies were 70.03% and 76.19% when the influent P concentration was 2.5 mg/L and 10 mg/L in BSBR, respectively, and the maximum P concentration of recovery liquid was 81.29 mg/L and 173.12 mg/L, respectively. There were no phosphate kinase (PPK) and phosphate hydrolase (PPX) in extracellular polymeric substances (EPS). The dominant PAOs were Candidatus_Contendobacter, Dechloromonas, and Flavobacterium, and the dominant GAO was Candidatus_Competibacter. The abundance of Candidatus_Contendobacter was the highest with the most potential contribution to P removal. PAOs had competitive advantages in carbon (C) source uptake, glycogen metabolism, P metabolism, and adenosine triphosphate (ATP) metabolism. HMP was unique to PAOs, EMP had the highest abundance in glycogen metabolism, and ED was contained in PAOs of BSBR. These results indicated that BSBR provided sufficient reducing power and ATP for PAOs through different glycogen decomposition pathways to promote P uptake and obtained competitive advantages in P metabolism, C source uptake, and ATP utilization to achieve efficient P removal and enrichment. Collectively, our current findings provided valuable insights into the P removal and enrichment mechanism of BSBR in municipal sewage.


Asunto(s)
Reactores Biológicos , Glucógeno , Biopelículas , Fósforo , Polifosfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA