Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 14(2): 47, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268987

RESUMEN

Finger millet, being rich source of essential minerals like iron and zinc, is an ideal model to identify candidate genes contributing to high grain iron content (GIC) and zinc content (GZC) in plants. Hence, finger millet diversity panel comprised of 202 genotypes was evaluated in two geographical locations and found to have a wide variation for GIC and GZC. A genome-wide association study using 2977 single nucleotide polymorphism (SNP) markers identified reliable marker-trait associations (MTAs). The use of general linear model (GLM) and mixed linear model (MLM) approaches revealed 5 and 8 common MTAs linked to GIC and GZC, respectively, for both Almora and Pantnagar locations, with a high level of significance (P < 0.01). However, 12 significant MTAs were found to be linked with GIC for Pantnagar location alone. The MTAs were associated with specific genes that produce ferritin (Fer1), iron-regulated transporter-like protein (IRT2), and yellow stripe-like 2 proteins (YSL2). These genes are likely linked to GIC variation in finger millet. Additionally, the variation in GZC in finger millet was connected to genes that encode zinc transporters, namely ZIP1 protein (ZIP1) and ZTP29-like protein (ZTP29). Compared to low GIC and GZC genotypes, high GIC and GZC genotypes exhibited greater relative expression of these genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03889-1.

2.
Funct Integr Genomics ; 23(3): 242, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453957

RESUMEN

Potato cyst nematodes (PCNs) are major pests worldwide that affect potato production. The molecular changes happening in the roots upon PCN infection are still unknown. Identification of transcripts and genes governing PCN resistance will help in the development of resistant varieties. Hence, differential gene expression of compatible (Kufri Jyoti) and incompatible (JEX/A-267) potato genotypes was studied before (0 DAI) and after (10 DAI) inoculation of Globodera rostochiensis J2s through RNA sequencing (RNA-Seq). Total sequencing reads generated ranged between 33 and 37 million per sample, with a read mapping of 48-84% to the potato reference genome. In the infected roots of the resistant genotype JEX/A-267, 516 genes were downregulated, and 566 were upregulated. In comparison, in the susceptible genotype Kufri Jyoti, 316 and 554 genes were downregulated and upregulated, respectively. Genes encoding cell wall proteins, zinc finger protein, WRKY transcription factors, MYB transcription factors, disease resistance proteins, and pathogenesis-related proteins were found to be majorly involved in the incompatible reaction after PCN infection in the resistant genotype, JEX/A-267. Furthermore, RNA-Seq results were validated through quantitative real-time PCR (qRT-PCR), and it was observed that ATP, FLAVO, CYTO, and GP genes were upregulated at 5 DAI, which was subsequently downregulated at 10 DAI. The genes encoding ATP, FLAVO, LBR, and GP were present in > 1.5 fold before infection in JEX-A/267 and upregulated 7.9- to 27.6-fold after 5 DAI; subsequently, most of these genes were downregulated to 0.9- to 2.8-fold, except LBR, which was again upregulated to 44.4-fold at 10 DAI.


Asunto(s)
Solanum tuberosum , Tylenchoidea , Animales , Solanum tuberosum/genética , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/genética , Adenosina Trifosfato
3.
Physiol Mol Biol Plants ; 28(6): 1233-1248, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35910435

RESUMEN

Nutrient deficiencies lead to various health issues and are common worldwide. Potato germplasm is a rich source of natural variations and genetic variability present in it can be exploited for developing nutrient-rich high-yielding potato varieties. In this study, variations in the yield, dry matter (DM) and mineral nutrients concentrations were evaluated in both peeled and unpeeled tubers of 243 highly diverse tetraploid potato accessions. These were raised under field conditions for two consecutive years. The germplasm studied has a wider range of variations in peeled tubers DM (13.71-27.80%), Fe (17.08-71.03 mg/kg), Zn (9.55-34.78 mg/kg), Cu (2.13-13.25 mg/kg), Mn (7.04-25.15), Ca (117.4-922.5 mg/kg), Mg (656.6-1510.6 mg/kg), S (1121.3-3765.8 mg/kg), K (1.20-3.09%), P (0.21-0.50%) and Mo (53.6-1164.0 ppb) concentrations compared to popular Indian potato varieties. Higher nutrient concentrations in whole tubers compared to tuber flesh suggest that these are present in high concentration in the tuber peripheral layers and peeling off the tubers results in the loss of nutrients. Highest loss due to peeling off the tubers was observed in Fe (35.63%) followed by Cu (22.80%), Mn (21.69%), Ca (21.27%), Mg (12.89%), K (12.75%), Zn (10.13%), and Mo (9.87%). The GCV and PCV for all the traits in peeled tubers ranged from 9.67 to 29.91%, and 13.84 to 43.32%, respectively. Several significant positive correlations were observed among the parameters and the first two principal components accounted for 39.37% of total variations. The results of this study will pave a way for the development of nutrient-rich high-yielding potato varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01197-1.

4.
Physiol Mol Biol Plants ; 27(10): 2297-2313, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744367

RESUMEN

Hidden hunger is leading to extensive health problems in the developing world. Several strategies could be used to reduce the micronutrient deficiencies by increasing the dietary uptake of essential micronutrients. These include diet diversification, pharmaceutical supplementation, food fortification and crop biofortification. Among all, crop biofortification is the most sustainable and acceptable strategy to overcome the global issue of hidden hunger. Since most of the people suffering from micronutrient deficiencies, have monetary issues and are dependent on staple crops to fulfil their recommended daily requirements of various essential micronutrients. Therefore, increasing the micronutrient concentrations in cost effective staple crops seems to be an effective solution. Potato being the world's most consumed non-grain staple crop with enormous industrial demand appears to be an ideal candidate for biofortification. It can be grown in different climatic conditions, provide high yield, nutrition and dry matter in lesser time. In addition, huge potato germplasm have natural variations related to micronutrient concentrations, which can be utilized for its biofortification. This review discuss the current scenario of micronutrient malnutrition and various strategies that could be used to overcome it. The review also shed a light on the genetic variations present in potato germplasm and suggest effective ways to incorporate them into modern high yielding potato varieties.

5.
Methods Mol Biol ; 2288: 293-305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270019

RESUMEN

Haploids are plants with gametophytic chromosome number, which upon chromosome duplication results in production of doubled haploids (DHs). There are several methods to obtain haploids and DHs, of which in vitro anther culture is the most effective and widely used method in tobacco. The production of haploids and DHs through androgenesis allows for a single-step development of complete homozygous lines from heterozygous genotypes, shortening the time required to produce homozygous genotypes in comparison to the conventional breeding scheme. The DH development process comprises two main steps: induction of androgenesis and duplication of the haploid genome. The critical stages of DH protocol in tobacco are determining the bud stage for anther culture, pretreatment, anther culture media, detection and identification of haploids, and chromosome doubling. Here we present an efficient anther culture protocol to get haploids and DHs in flue-cured virginia (FCV) tobacco. This optimized protocol can be used as a potential tool for generation of haploids and DHs for genetic improvement of tobacco.


Asunto(s)
Flores/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo , Fitomejoramiento/métodos , Técnicas de Embriogénesis Somática de Plantas/métodos , Medios de Cultivo , Flores/genética , Haploidia , Polen/genética , Polen/crecimiento & desarrollo , Nicotiana/genética
6.
Funct Integr Genomics ; 21(2): 215-229, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33611637

RESUMEN

Temperature plays an important role in potato tuberization. The ideal night temperature for tuber formation is ~17 °C while temperature beyond 22 °C drastically reduces the tuber yield. Moreover, high temperature has several undesirable effects on the plant and tubers. Investigation of the genes involved in tuberization under heat stress can be helpful in the generation of heat-tolerant potato varieties. Five genes, including StSSH2 (succinic semialdehyde reductase isoform 2), StWTF (WRKY transcription factor), StUGT (UDP-glucosyltransferase), StBHP (Bel1 homeotic protein), and StFLTP (FLOWERING LOCUS T protein), involved in tuberization and heat stress in potato were investigated. The results of our microarray analysis suggested that these genes regulate and function as transcriptional factors, hormonal signaling, cellular homeostasis, and mobile tuberization signals under elevated temperature in contrasting KS (Kufri Surya) and KCM (Kufri Chandramukhi) potato cultivars. However, no detailed report is available which establishes functions of these genes in tuberization under heat stress. Thus, the present study was designed to validate the functions of these genes in tuber signaling and heat tolerance using virus-induced gene silencing (VIGS). Results indicated that VIGS transformed plants had a consequential reduction in StSSH2, StWTF, StUGT, StBHP, and StFLTP transcripts compared to the control plants. Phenotypic observations suggest an increase in plant senescence, reductions to both number and size of tubers, and a decrease in plant dry matter compared to the control plants. We also establish the potency of VIGS as a high-throughput technique for functional validation of genes.


Asunto(s)
Silenciador del Gen , Respuesta al Choque Térmico/genética , Tubérculos de la Planta/genética , Solanum tuberosum/genética , Regulación de la Expresión Génica de las Plantas/genética , Calor , Proteínas de Plantas/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/virología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/virología , Temperatura
7.
Plant Genome ; 13(3): e20056, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33217206

RESUMEN

Using genomic information to predict phenotypes can improve the accuracy of estimated breeding values and can potentially increase genetic gain over conventional breeding. In this study, we investigated the prediction accuracies achieved by best linear unbiased prediction (BLUP) for nine potato phenotypic traits using three types of relationship matrices pedigree ABLUP, genomic GBLUP, and a hybrid matrix (H) combining pedigree and genomic information (HBLUP). Deep pedigree information was available for >3000 different potato breeding clones evaluated over four years. Genomic relationships were estimated from >180,000 informative SNPs generated using a genotyping-by-sequencing transcriptome (GBS-t) protocol for 168 cultivars, many of which were parents of clones. Two validation scenarios were implemented, namely "Genotyped Cultivars Validation" (a subset of genotyped lines as validation set) and "Non-genotyped 2009 Progenies Validation". Most of the traits showed moderate to high narrow sense heritabilities (range 0.22-0.72). In the Genotyped Cultivars Validation, HBLUP outperformed ABLUP on prediction accuracies for all traits except early blight, and outperformed GBLUP for most of the traits except tuber shape, tuber eye depth and boil after-cooking darkening. This is evidence that the in-depth relationship within the H matrix could potentially result in better prediction accuracy in comparison to using A or G matrix individually. The prediction accuracies of the Non-genotyped 2009 Progenies Validation were comparable between ABLUP and HBLUP, varying from 0.17-0.70 and 0.18-0.69, respectively. Better prediction accuracy and less bias in prediction using HBLUP is of practical utility to breeders as all breeding material is ranked on the same scale leading to improved selection decisions. In addition, our approach provides an economical alternative to utilize historic breeding data with current genotyped individuals in implementing genomic selection.


Asunto(s)
Solanum tuberosum , Cruzamiento , Genoma , Genotipo , Fenotipo , Solanum tuberosum/genética
8.
Planta ; 250(3): 783-801, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30623242

RESUMEN

MAIN CONCLUSION: Emerging insights in buckwheat molecular genetics allow the integration of genomics driven breeding to revive this ancient crop of immense nutraceutical potential from Asia. Out of several thousand known edible plant species, only four crops-rice, wheat, maize and potato provide the largest proportion of daily nutrition to billions of people. While these crops are the primary supplier of carbohydrates, they lack essential amino acids and minerals for a balanced nutrition. The overdependence on only few crops makes the future cropping systems vulnerable to the predicted climate change. Diversifying food resources through incorporation of orphan or minor crops in modern cropping systems is one potential strategy to improve the nutritional security and mitigate the hostile weather patterns. One such crop is buckwheat, which can contribute to the agricultural sustainability as it grows in a wide range of environments, requires relatively low inputs and possess balanced amino acid and micronutrient profiles. Additionally, gluten-free nature of protein and nutraceutical properties of secondary metabolites make the crop a healthy alternative of wheat-based diet in developed countries. Despite enormous potential, efforts for the genetic improvement of buckwheat are considerably lagged behind the conventional cereal crops. With the draft genome sequences in hand, there is a great scope to speed up the progress of genetic improvement of buckwheat. This article outlines the state of the art in buckwheat research and provides concrete perspectives how modern breeding approaches can be implemented to accelerate the genetic gain. Our suggestions are transferable to many minor and underutilized crops to address the issue of limited genetic gain and low productivity.


Asunto(s)
Fagopyrum/genética , Fitomejoramiento , Producción de Cultivos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Fagopyrum/crecimiento & desarrollo , Genoma de Planta/genética , Genómica , Valor Nutritivo , Fitomejoramiento/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA