Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Hyperthermia ; 38(1): 743-754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33941016

RESUMEN

OBJECTIVE: Deep-tissue localization of thermal doses is a long-standing challenge in magnetic field hyperthermia (MFH), and remains a limitation of the clinical application of MFH to date. Here, we show that pulse sequencing of MFH leads to a more persistent inhibition of tumor growth and less systemic impact than continuous MFH, even when delivering the same thermal dose. METHODS: We used an in vivo orthotopic murine model of pancreatic PANC-1 cancer, which was designed with a view to the forthcoming 'NoCanTher' clinical study, and featured MFH alongside systemic chemotherapy (SyC: gemcitabine and nab-paclitaxel). In parallel, in silico thermal modelling was implemented. RESULTS: Tumor volumes 27 days after the start of MFH/SyC treatment were 53% (of the initial volume) in the pulse MFH group, compared to 136% in the continuous MFH group, and 337% in the non-treated controls. Systemically, pulse MFH led to ca. 50% less core-temperature increase in the mice for a given injected dose of magnetic heating agent, and inflicted lower levels of the stress marker, as seen in the blood-borne neutrophil-to-lymphocyte ratio (1.7, compared to 3.2 for continuous MFH + SyC, and 1.2 for controls). CONCLUSION: Our data provided insights into the influence of pulse sequencing on the observed biological outcomes, and validated the nature of the improved thermal dose localization, alongside significant lowering of the overall energy expenditure entailed in the treatment.


Asunto(s)
Hipertermia Inducida , Neoplasias Pancreáticas , Animales , Hipertermia , Campos Magnéticos , Magnetismo , Ratones , Neoplasias Pancreáticas/terapia
2.
Small ; 17(14): e2005241, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33734595

RESUMEN

Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Compuestos Férricos , Humanos , Hipertermia , Campos Magnéticos , Magnetismo
3.
J Mater Chem B ; 8(46): 10527-10539, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33179706

RESUMEN

Nanoparticle induced hyperthermia has been considered as a promising approach for cancer treatment for decades. The local heating ability and drug delivery potential highlight a diversified possibility in clinical application, therefore a variety of nanoparticles has been developed accordingly. However, currently, only a few of them are translated into the clinical stage indicating a 'medically underexplored nanoparticles' situation, which encourages their comprehensive biomedical exploration. This study presents a thorough biological evaluation of previous well-developed dual pH- and thermo-responsive magnetic doxorubicin-nanocarriers (MNC-DOX) in multiple cancer cell lines. The cytotoxicity of the nanocomposites has been determined by the MTT assay on primary cell lines. Histology and fluorescence microscopy imaging revealed the efficiency of cellular uptake of nanocarriers in different cell lines. The IC50 of MNC-DOX is significantly higher than that of free DOX without an alternating magnetic field (AMF), which implied the potential to lower the systemic cytotoxicity in clinical research. The concurrent thermo-chemotherapy generated by this platform has been successfully achieved under an AMF. Promising effective synergistic results have been demonstrated through in vitro study in multi-model cancer cell lines via both trypan blue exclusion and bioluminescence imaging methods. Furthermore, the two most used magnetic hyperthermia modalities, namely intracellular and extracellular treatments, have been compared on the same nanocarriers in all 3 cell lines, which showed that treatment after internalization is not required but preferable. These results lead to the conclusion that this dual responsive nanocarrier has extraordinary potential to serve as a novel broad-spectrum anticancer drug and worth pursuing for potential clinical applications.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Nanocompuestos/química , Animales , Línea Celular Tumoral , Portadores de Fármacos/toxicidad , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Hipertermia Inducida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/toxicidad , Ratones , Nanocompuestos/toxicidad , Temperatura
4.
Biomater Sci ; 8(9): 2590-2599, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32238997

RESUMEN

In this work we describe the formulation and characterisation of red-emitting polymeric nanocapsules (NCs) incorporating superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic tumour targeting. The self-fluorescent oligomers were synthesised and chemically conjugated to PLGA which was confirmed by NMR spectroscopy, FT-IR spectroscopy and mass spectrometry. Hydrophobic SPIONs were synthesised through thermal decomposition and their magnetic and heating properties were assessed by SQUID magnetometry and calorimetric measurements, respectively. Magnetic nanocapsules (m-NCs) were prepared by a single emulsification/solvent evaporation method. Their in vitro cytotoxicity was examined in CT26 colon cancer cells. The formulated fluorescent m-NCs showed good stability and biocompatibility both in vitro and in vivo in CT 26 colon cancer models. Following intravenous injection, accumulation of m-NCs in tumours was observed by optical imaging. A higher iron content in the tumours exposed to a magnetic field, compared to the contralateral tumours without magnetic exposure in the same animal, further confirmed the magnetic tumour targeting in vivo. The overall results show that the engineered red-emitting m-NCs have great potential as multifunctional nanocarriers for multi-model bioimaging and magnetic-targeted drug delivery.


Asunto(s)
Compuestos Férricos/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Nanocápsulas/administración & dosificación , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Compuestos Férricos/farmacocinética , Colorantes Fluorescentes/farmacocinética , Hipertermia Inducida , Hierro/metabolismo , Fenómenos Magnéticos , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Poliglactina 910/administración & dosificación , Poliglactina 910/farmacocinética , Distribución Tisular
5.
Int J Hyperthermia ; 34(6): 671-686, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29046072

RESUMEN

We offer a critique of what constitutes a suitable dosage limit, in both clinical and preclinical studies, for interstitially administered magnetic nanoparticles in order to enable therapeutic hyperthermia under the action of an externally applied alternating magnetic field. We approach this first from the perspective of the currently approved clinical dosages of magnetic nanoparticles in the fields of MRI contrast enhancement, sentinel node detection, iron replacement therapy and magnetic thermoablation. We compare this to a simple analytical model of the achievable hyperthermia temperature rise in both humans and animals based on the interstitially administered dose, the heating and dispersion characteristics of the injected fluid, and the strength and frequency of the applied magnetic field. We show that under appropriately chosen conditions a therapeutic temperature rise is achievable in clinically relevant situations. We also show that in such cases it may paradoxically be harder to achieve the same therapeutic temperature rise in a preclinical model. We comment on the implications for the evidence-based translation of hyperthermia based interventions from the laboratory to the clinic.


Asunto(s)
Hipertermia Inducida/métodos , Magnetismo/métodos , Nanopartículas/administración & dosificación , Humanos
6.
Int J Nanomedicine ; 11: 1973-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27274229

RESUMEN

Magnetic hyperthermia - a potential cancer treatment in which superparamagnetic iron oxide nanoparticles (SPIONs) are made to resonantly respond to an alternating magnetic field (AMF) and thereby produce heat - is of significant current interest. We have previously shown that mesenchymal stem cells (MSCs) can be labeled with SPIONs with no effect on cell proliferation or survival and that within an hour of systemic administration, they migrate to and integrate into tumors in vivo. Here, we report on some longer term (up to 3 weeks) post-integration characteristics of magnetically labeled human MSCs in an immunocompromized mouse model. We initially assessed how the size and coating of SPIONs dictated the loading capacity and cellular heating of MSCs. Ferucarbotran(®) was the best of those tested, having the best like-for-like heating capability and being the only one to retain that capability after cell internalization. A mouse model was created by subcutaneous flank injection of a combination of 0.5 million Ferucarbotran-loaded MSCs and 1.0 million OVCAR-3 ovarian tumor cells. After 2 weeks, the tumors reached ~100 µL in volume and then entered a rapid growth phase over the third week to reach ~300 µL. In the control mice that received no AMF treatment, magnetic resonance imaging (MRI) data showed that the labeled MSCs were both incorporated into and retained within the tumors over the entire 3-week period. In the AMF-treated mice, heat increases of ~4°C were observed during the first application, after which MRI indicated a loss of negative contrast, suggesting that the MSCs had died and been cleared from the tumor. This post-AMF removal of cells was confirmed by histological examination and also by a reduced level of subsequent magnetic heating effect. Despite this evidence for an AMF-elicited response in the SPION-loaded MSCs, and in contrast to previous reports on tumor remission in immunocompetent mouse models, in this case, no significant differences were measured regarding the overall tumor size or growth characteristics. We discuss the implications of these results on the clinical delivery of hyperthermia therapy to tumors and on the possibility that a preferred therapeutic route may involve AMF as an adjuvant to an autologous immune response.


Asunto(s)
Dextranos/administración & dosificación , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/uso terapéutico , Células Madre Mesenquimatosas/química , Neoplasias Experimentales/terapia , Animales , Medios de Contraste , Femenino , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/administración & dosificación , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones Desnudos , Neoplasias Experimentales/patología
7.
Theranostics ; 6(3): 342-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26909110

RESUMEN

Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.


Asunto(s)
Compuestos Férricos/administración & dosificación , Magnetismo , Imagen Multimodal/métodos , Nanocápsulas/administración & dosificación , Neoplasias/diagnóstico , Neoplasias/patología , Administración Intravenosa , Animales , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos BALB C
8.
Nanomedicine (Lond) ; 11(2): 121-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26654549

RESUMEN

AIM: To assess cell death pathways in response to magnetic hyperthermia. MATERIALS & METHODS: Human melanoma cells were loaded with citric acid-coated iron-oxide nanoparticles, and subjected to a time-varying magnetic field. Pathways were monitored in vitro in suspensions and in situ in monolayers using fluorophores to report on early-stage apoptosis and late-stage apoptosis and/or necrosis. RESULTS: Delayed-onset effects were observed, with a rate and extent proportional to the thermal-load-per-cell. At moderate loads, membranal internal-to-external lipid exchange preceded rupture and death by a few hours (the timeline varying cell-to-cell), without any measurable change in the local environment temperature. CONCLUSION: Our observations support the proposition that intracellular heating may be a viable, controllable and nonaggressive in vivo treatment for human pathological conditions.


Asunto(s)
Apoptosis/efectos de la radiación , Hipertermia Inducida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/efectos de la radiación , Melanoma/patología , Melanoma/terapia , Línea Celular Tumoral , Sistemas de Computación , Relación Dosis-Respuesta en la Radiación , Humanos , Dosis de Radiación , Factores de Tiempo , Resultado del Tratamiento
9.
Int J Nanomedicine ; 8: 2543-54, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23901272

RESUMEN

The latent HIV-1 reservoir remains the major barrier to HIV-1 eradication. Although successful at limiting HIV replication, highly active antiretroviral therapy is unable to cure HIV infection, thus novel therapeutic strategies are needed to eliminate the virus. Magnetic field hyperthermia (MFH) generates thermoablative cytotoxic temperatures in target-cell populations, and has delivered promising outcomes in animal models, as well as in several cancer clinical trials. MFH has been proposed as a strategy to improve the killing of HIV-infected cells and for targeting the HIV latent reservoirs. We wished to determine whether MFH could be used to enhance cytotoxic T-lymphocyte (CTL) targeting of HIV-infected cells in a proof-of-concept study. Here, for the first time, we apply MFH to an infectious disease (HIV-1) using the superparamagnetic iron oxide nanoparticle FeraSpin R. We attempt to improve the cytotoxic potential of T-cell receptor-transfected HIV-specific CTLs using thermotherapy, and assess superparamagnetic iron oxide nanoparticle toxicity, uptake, and effect on cell function using more sensitive methods than previously described. FeraSpin R exhibited only limited toxicity, demonstrated efficient uptake and cell-surface attachment, and only modestly impacted T-cell function. In contrast to the cancer models, insufficient MFH was generated to enhance CTL killing of HIV-infected cells. MFH remains an exciting new technology in the field of cancer therapeutics, which, as technology improves, may have significant potential to enhance CTL function and act as an adjunctive therapy in the eradication of latently infected HIV-positive cells.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , VIH-1/inmunología , Hipertermia Inducida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T CD8-positivos/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Endocitosis , Citometría de Flujo , Calor , Humanos , Nanopartículas de Magnetita/toxicidad , Nanomedicina , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA