Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
SLAS Discov ; 23(6): 574-584, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29673279

RESUMEN

Traditional high-throughput drug screening in oncology routinely relies on two-dimensional (2D) cell models, which inadequately recapitulate the physiologic context of cancer. Three-dimensional (3D) cell models are thought to better mimic the complexity of in vivo tumors. Numerous methods to culture 3D organoids have been described, but most are nonhomogeneous and expensive, and hence impractical for high-throughput screening (HTS) purposes. Here we describe an HTS-compatible method that enables the consistent production of organoids in standard flat-bottom 384- and 1536-well plates by combining the use of a cell-repellent surface with a bioprinting technology incorporating magnetic force. We validated this homogeneous process by evaluating the effects of well-characterized anticancer agents against four patient-derived pancreatic cancer KRAS mutant-associated primary cells, including cancer-associated fibroblasts. This technology was tested for its compatibility with HTS automation by completing a cytotoxicity pilot screen of ~3300 approved drugs. To highlight the benefits of the 3D format, we performed this pilot screen in parallel in both the 2D and 3D assays. These data indicate that this technique can be readily applied to support large-scale drug screening relying on clinically relevant, ex vivo 3D tumor models directly harvested from patients, an important milestone toward personalized medicine.


Asunto(s)
Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Organoides/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral , Células HT29 , Ensayos Analíticos de Alto Rendimiento , Humanos , Medicina de Precisión/métodos
2.
Sci Rep ; 6: 30640, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27477945

RESUMEN

Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives.


Asunto(s)
Bioimpresión/métodos , Evaluación Preclínica de Medicamentos/métodos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Vasoconstrictores/aislamiento & purificación , Vasoconstrictores/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Magnetismo , Miocitos del Músculo Liso/fisiología
3.
Nat Rev Cancer ; 13(5): 315-27, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23584334

RESUMEN

Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.


Asunto(s)
Neoplasias/terapia , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula/métodos , Técnicas de Cocultivo , Composición de Medicamentos , Humanos , Neoplasias/patología , Fototerapia , Nave Espacial , Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA