Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 28(6): 126, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37395039

RESUMEN

BACKGROUND: Lipopolysaccharide (LPS), an effective stimulator of the immune system, has been widely applied in an experimental pig model for human sepsis. Aquaporins (AQPs), a family of small integral membrane proteins responsible for facilitating water fluxes through the cell membrane, offer potential promising drug targets for sepsis treatment due to their role in water balance and inflammation. METHODS: In order to investigate the potential effect of a dietary amino acid mixture supplementation on LPS-challenged weaned piglets, a total of 30, 28-day-old, males were randomly allocated to 1 of 3 dietary treatments for a 5-week period, with 10 animals in each: diet 1 was a control (CTL) treatment; diet 2 was LPS treatment, where the piglets were intraperitoneally administered LPS (at 25 µg/kg body weight); diet 3 was LPS + cocktail treatment, where the piglets were intraperitoneally administered LPS and fed a diet supplemented with a mixture of arginine, branched-chain amino acids (BCAA, leucine, valine, and isoleucine), and cystine. Key organs that control sepsis were collected and processed by real time quantitative PCR (RT-qPCR) for the AQPs and cytokines transcriptional profiles. RESULTS: Minor variations were detected for AQPs and inflammatory markers mRNA levels, upon the dependence of LPS or the amino acid cocktail suggesting the piglets' immune recovery. Using a discriminant analysis tool, we report for the first time, a tissue-specific variation in AQPs and cytokines transcriptional profiles that clearly distinguish the small intestine and the kidney from the liver and the spleen. CONCLUSIONS: This study provides a novel insight into the gene expression signature of AQPs and cytokines in the functional physiology of each organ in piglets.


Asunto(s)
Acuaporinas , Lipopolisacáridos , Masculino , Porcinos , Animales , Humanos , Lipopolisacáridos/farmacología , Suplementos Dietéticos/análisis , Aminoácidos , Citocinas/genética , Citocinas/metabolismo , Acuaporinas/genética , Agua/metabolismo
2.
PLoS One ; 16(1): e0245739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465153

RESUMEN

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.


Asunto(s)
Alimentación Animal/análisis , Acuaporinas/metabolismo , Cistina/farmacología , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamina/farmacología , Intestino Delgado/metabolismo , Animales , Animales Recién Nacidos , Acuaporinas/genética , Cistina/administración & dosificación , Glutamina/administración & dosificación , Intestino Delgado/efectos de los fármacos , Masculino , Porcinos
3.
Cell Mol Life Sci ; 78(6): 3073-3085, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33231721

RESUMEN

Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1ß, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1ß release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.


Asunto(s)
Acuaporina 3/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Acuaporina 3/antagonistas & inhibidores , Acuaporina 3/genética , Caspasa 1/deficiencia , Caspasa 1/genética , Caspasa 1/metabolismo , Línea Celular , Citocinas/metabolismo , Glicerol/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nigericina/farmacología , Compuestos Orgánicos de Oro/química , Compuestos Orgánicos de Oro/metabolismo , Potasio/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32584998

RESUMEN

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Asunto(s)
Acuaporinas , Vitis , Acuaporinas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Silicio/metabolismo , Vitis/genética , Vitis/metabolismo
5.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344729

RESUMEN

The involvement of aquaporins in rain-induced sweet cherry (Prunus avium L.) fruit cracking is an important research topic with potential agricultural applications. In the present study, we performed the functional characterization of PaPIP1;4, the most expressed aquaporin in sweet cherry fruit. Field experiments focused on the pre-harvest exogenous application to sweet cherry trees, cultivar Skeena, with a solution of 0.5% CaCl2, which is the most common treatment to prevent cracking. Results show that PaPIP1;4 was mostly expressed in the fruit peduncle, but its steady-state transcript levels were higher in fruits from CaCl2-treated plants than in controls. The transient expression of PaPIP1;4-GFP in tobacco epidermal cells and the overexpression of PaPIP1;4 in YSH1172 yeast mutation showed that PaPIP1;4 is a plasma membrane protein able to transport water and hydrogen peroxide. In this study, we characterized for the first time a plasma membrane sweet cherry aquaporin able to transport water and H2O2 that is upregulated by the pre-harvest exogenous application of CaCl2 supplements.


Asunto(s)
Acuaporinas/genética , Acuaporinas/metabolismo , Calcio/metabolismo , Frutas/metabolismo , Prunus avium/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional/métodos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
6.
Br J Nutr ; 120(10): 1098-1106, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401002

RESUMEN

EPA (20 : 5n-3) and DHA (22 : 6n-3) fatty acids have weight-reducing properties with physiological activity depending on their molecular structure - that is, as TAG or ethyl esters (EE). Aquaporins (AQP) are membrane protein channels recognised as important players in fat metabolism, but their differential expression in white adipose tissue (WAT) and brown adipose tissue (BAT), as well as their modulation by dietary n-3 long-chain PUFA (LCPUFA) such as EPA and DHA, has never been investigated. In this study, the transcriptional profiles of AQP3, AQP5, AQP7 and selected lipid markers of WAT (subcutaneous and visceral) and BAT (interscapular) from hamsters fed diets containing n-3 LCPUFA in different lipid structures such as fish oil (FO, rich in EPA and DHA in the TAG form) and FO-EE (rich in EPA and DHA in the EE form) were used and compared with linseed oil (LSO) as the reference group. A clear effect of fat depot was observed for AQP3 and leptin (LEP), with the lowest values of mRNA found in BAT relative to WAT. The opposite occurred for PPARα. AQP7 was affected by diet, with FO-fed hamsters having higher mRNA levels compared with LSO-fed hamsters. The relative gene expression of AQP5, adiponectin (ADIPO), GLUT4 and PPARγ was influenced by both fat tissue and diet. Taken together, our results revealed a differential expression profile of AQP and some markers of lipid metabolism in both WAT and BAT in response to feeding n-3 LCPUFA in two different structural formats: TAG v. EE.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Acuaporinas/metabolismo , Ácidos Grasos Omega-3/química , Lípidos/química , Adipocitos/metabolismo , Animales , Acuaporina 3/metabolismo , Acuaporina 5/metabolismo , Cricetinae , Dieta , Ácidos Grasos Insaturados/química , Aceites de Pescado , Expresión Génica , Perfilación de la Expresión Génica , Transportador de Glucosa de Tipo 4/metabolismo , Leptina/metabolismo , Aceite de Linaza/química , Metabolismo de los Lípidos , Masculino , Mesocricetus , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Isoformas de Proteínas , ARN Mensajero/metabolismo
7.
Reprod Biol Endocrinol ; 13: 60, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26066493

RESUMEN

BACKGROUND: In cryopreservation, oocytes are subjected to extreme hyperosmotic conditions, inducing large volume changes that, along with an abrupt temperature drop, interfere with their developmental competence. Our objectives in this work were to find conditions enabling an increase in oocyte cryosurvival and subsequent development. METHODS: Abattoir-derived bovine oocytes were cultured without (Control group) or with trans-10,cis-12 conjugated linoleic acid isomer (CLA group). Comparative observations were made for 1) the oocyte developmental competence after exposure to cryoprotectants followed or not by vitrification/warming, 2) the oocyte membrane permeability to water (using the non-permeant cryoprotectant sucrose) and 3) the oocyte membrane permeability to two cryoprotectants (ethylene glycol, EG, and dimethyl sulfoxide, DMSO). Mature oocytes cultured with or without CLA and vitrified/warmed or only exposed to cryoprotectants without vitrification were subjected to in vitro fertilization; embryo culture proceeded until the blastocyst stage. The oocyte membrane permeabilities to water and cryoprotectants were estimated using mature oocytes subjected to hyperosmotic challenges. For water permeability, 200 mM sucrose was used, whereas for the cryoprotectant permeability, a 10 % solution of both EG and DMSO was used. The data were analyzed using the MIXED procedure and Student's T-test. RESULTS: CLA supplementation improves the developmental competence of vitrified/warmed and cryoprotectants exposed oocytes (p < 0.01) and reduces their membrane permeability to water (37 %, p < 0.001) and to cryoprotectants (42 %, p < 0.001). CONCLUSIONS: By slowing the fluxes of water and of permeant cryoprotectants, CLA contributed to improved oocyte cryosurvival and post-thawed viability. This isomer supplementation to the maturation media should be considered when designing new protocols for oocyte cryopreservation.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Ácidos Linoleicos Conjugados/farmacología , Oocitos/citología , Animales , Bovinos , Permeabilidad de la Membrana Celular , Femenino , Fertilización In Vitro , Oocitos/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 458(2): 356-61, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25646690

RESUMEN

Conjugated linoleic acid (CLA), a group of minor fatty acids from ruminant origin, has long been recognized as a body fat lowering agent. Given the trans(t)10,cis(c)12-CLA well documented interference on lipolysis, we hypothesized for adipocytes altered permeation to glycerol when supplemented with this isomer. 3T3-L1 murine differentiated adipocytes were medium supplemented with linoleic acid (LA) and individual or combined c9,t11 and t10,c12-CLA isomers. Adipocytes treated with the t10,c12-CLA isomer and CLA mixture showed reduced triacylglycerols content (p < 0.001), re-enforcing the t10,c12-CLA as the anti-adipogenic CLA isomer. This finding was supported by decreased Δ9-desaturase index and adipocyte differentiation markers for the t10,c12-CLA group (p < 0.001), which suggest reduced lipogenesis and differentiation, respectively. The glycerol permeability was higher in all CLA treated cells compared to control and LA groups (p < 0.05). The increase in glycerol permeability agrees with both reduced triacylglycerols and non-osmotic cellular volume in the t10,c12-CLA and CLA mixture groups. Taken together, our data suggest that the increased adipocyte plasma membrane glycerol fluxes may be part of the anti-adipogenic response to CLA treatments.


Asunto(s)
Adipocitos/citología , Adipocitos/fisiología , Adipogénesis/fisiología , Permeabilidad de la Membrana Celular/fisiología , Ácidos Grasos/metabolismo , Glicerol/farmacocinética , Ácido Linoleico/farmacología , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Diferenciación Celular/fisiología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ratones
9.
Biochem Biophys Res Commun ; 398(2): 199-204, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20599739

RESUMEN

Conjugated linoleic acid (CLA) is a dietary fatty acid frequently used as a body fat reducing agent whose effects upon cell membranes and cellular function remain unknown. Obese Zucker rats were fed atherogenic diets containing saturated fats of vegetable or animal origin with or without 1% CLA, as a mixture of cis(c)9,trans(t)11 and t10,c12 isomers. Plasma membrane vesicles obtained from visceral adipose tissue were used to assess the effectiveness of dietary fat and CLA membrane incorporation and its outcome on fluidity and permeability to water and glycerol. A significant decrease in adipose membrane fluidity was correlated with the changes observed in permeability, which seem to be caused by the incorporation of the t10,c12 CLA isomer into membrane phospholipids. These results indicate that CLA supplementation in obese Zucker rats fed saturated and cholesterol rich diets reduces the fluidity and permeability of adipose membranes, therefore not supporting CLA as a body fat reducing agent through membrane fluidification in obese fat consumers.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Linoleicos Conjugados/administración & dosificación , Fluidez de la Membrana/efectos de los fármacos , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Masculino , Ratas , Ratas Zucker
10.
Biochem Biophys Res Commun ; 383(1): 108-12, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19341709

RESUMEN

Conjugated linoleic acid (CLA) refers to a group of positional and geometrical isomers of linoleic acid in which the double bonds are conjugated. Dietary CLA has been associated with various health benefits although details of its molecular mode of action remain elusive. The effect of CLA supplemented to palm oil-based diets in Wistar rats, as a mixture of both or isolated c9,t11 and t10,c12 isomers, was examined on water and glycerol membrane permeability of kidney proximal tubule. Although water permeability was unaltered, an increase in glycerol permeability was obtained for the group supplemented with CLA mixture, even though the activation energy for glycerol permeation remained high. This effect was correlated with an increased CLA isomeric membrane incorporation for the same dietary group. These results suggest that diet supplementation with CLA mixture, in contrast to its individual isomers, may enhance membrane fluidity subsequently raising kidney glycerol reabsorption.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Dieta , Glicerol/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Ácidos Linoleicos Conjugados/administración & dosificación , Agua/metabolismo , Animales , Isomerismo , Túbulos Renales Proximales/metabolismo , Ácidos Linoleicos Conjugados/química , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA