Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Transl Sci ; 13(6): 1060-1064, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32267997

RESUMEN

The zebrafish infected with Mycobacterium marinum (M. marinum) is an attractive tuberculosis disease model, showing similar pathogenesis to Mycobacterium tuberculosis (M. tuberculosis) infections in humans. To translate pharmacological findings from this disease model to higher vertebrates, a quantitative understanding of the natural growth of M. marinum in comparison to the natural growth of M. tuberculosis is essential. Here, the natural growth of two strains of M. marinum, E11 and MUSA , is studied over an extended period using an established model-based approach, the multistate tuberculosis pharmacometric (MTP) model, for comparison to that of M. tuberculosis. Poikilotherm-derived strain E11 and human-derived strain MUSA were grown undisturbed up to 221 days and viability of cultures (colony forming unit (CFU)/mL) was determined by plating at different time points. Nonlinear mixed effects modeling using the MTP model quantified the bacterial growth, the transfer among fast, slow, and non-multiplying states, and the inoculi. Both strains showed initial logistic growth, reaching a maximum after 20-25 days for E11 and MUSA , respectively, followed by a decrease to a new plateau. Natural growth of both E11 and MUSA was best described with Gompertz growth functions. For E11, the inoculum was best described in the slow-multiplying state, for MUSA in the fast-multiplying state. Natural growth of E11 was most similar to that of M. tuberculosis, whereas MUSA showed more aggressive growth behavior. Characterization of natural growth of M. marinum and quantitative comparison with M. tuberculosis brings the zebrafish tuberculosis disease model closer to the quantitative translational pipeline of antituberculosis drug development.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium marinum/crecimiento & desarrollo , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/uso terapéutico , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/aislamiento & purificación , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Pez Cebra/microbiología
2.
J Pharmacol Exp Ther ; 371(1): 15-24, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31371482

RESUMEN

Zebrafish larvae are increasingly used for pharmacological research, but internal drug exposure is often not measured. Understanding pharmacokinetics is necessary for reliable translation of pharmacological results to higher vertebrates, including humans. Quantification of drug clearance and distribution requires measurements of blood concentrations. Additionally, measuring drug metabolites is of importance to understand clearance in this model organism mechanistically. We therefore mechanistically studied and quantified pharmacokinetics in zebrafish larvae, and compared this to higher vertebrates, using paracetamol (acetaminophen) as a paradigm compound. A method was developed to sample blood from zebrafish larvae 5 days post fertilization. Blood concentrations of paracetamol and its major metabolites, paracetamol-glucuronide and paracetamol-sulfate, were measured. Blood concentration data were combined with measured amounts in larval homogenates and excreted amounts and simultaneously analyzed through nonlinear mixed-effects modeling, quantifying absolute clearance and distribution volume. Blood sampling from zebrafish larvae was most successful from the posterior cardinal vein, with a median volume (interquartile range) of 1.12 nl (0.676-1.66 nl) per blood sample. Samples were pooled (n = 15-35) to reach measurable levels. Paracetamol blood concentrations at steady state were only 10% of the external paracetamol concentration. Paracetamol-sulfate was the major metabolite, and its formation was quantified using a time-dependent metabolic formation rate. Absolute clearance and distribution volume correlated well with reported values in higher vertebrates, including humans. Based on blood concentrations and advanced data analysis, the mechanistic and quantitative understanding of paracetamol pharmacokinetics in zebrafish larvae has been established. This will improve the translational value of this vertebrate model organism in drug discovery and development. SIGNIFICANCE STATEMENT: In early phases of drug development, new compounds are increasingly screened in zebrafish larvae, but the internal drug exposure is often not taken into consideration. We developed innovative experimental and computational methods, including a blood-sampling technique, to measure the paradigm drug paracetamol (acetaminophen) and its major metabolites and quantify pharmacokinetics (absorption, distribution, elimination) in zebrafish larvae of 5 days post fertilization with a total volume of only 300 nl. These parameter values were scaled to higher vertebrates, including humans.


Asunto(s)
Acetaminofén/sangre , Analgésicos no Narcóticos/sangre , Absorción Fisiológica , Acetaminofén/análogos & derivados , Acetaminofén/farmacocinética , Analgésicos no Narcóticos/farmacocinética , Animales , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Larva/metabolismo , Tasa de Depuración Metabólica , Sensibilidad y Especificidad , Distribución Tisular , Pez Cebra
3.
PLoS One ; 13(8): e0203087, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30157258

RESUMEN

The knowledge on environmentally relevant chemicals that may interfere with thyroid signaling is scarce. Here, we present a method for the screening of goitrogens, compounds that disrupt the thyroid gland function, based on the automatic orientation of zebrafish in a glass capillary and a subsequent imaging of reporter gene fluorescence in the thyroid gland of embryos of the transgenic zebrafish line tg(tg:mCherry). The tg(tg:mCherry) reporter gene indicates a compensatory upregulation of thyroglobulin, the thyroid hormone precursor, in response to inhibition of thyroid hormone synthesis. Fish embryos were exposed to a negative control compound (3,4-dichloroaniline), or a concentration series of known goitrogenic compounds (resorcinol, methimazole, potassium perchlorate, 6-propyl-2-thiouracil, ethylenethiourea, phloroglucinol, pyrazole) with maximum exposure concentration selected based on mortality and/or solubility. Exposure to 3,4-dichloroaniline decreased the fluorescence signal. All goitrogenic compounds exhibited clear concentration-dependent inductions of reporter fluorescence 1.4 to 2.6 fold above control levels. Concentration-response modelling was used to calculate goitrogenic potencies based on EC50 values. The new automated method offers an efficient screening approach for goitrogenic activity.


Asunto(s)
Antitiroideos/farmacología , Automatización de Laboratorios , Evaluación Preclínica de Medicamentos/métodos , Animales , Animales Modificados Genéticamente , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Pez Cebra
4.
Zebrafish ; 13(6): 504-510, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27632065

RESUMEN

Zebrafish larvae (Danio rerio) are increasingly used to translate findings regarding drug efficacy and safety from in vitro-based assays to vertebrate species, including humans. However, the limited understanding of drug exposure in this species hampers its implementation in translational research. Using paracetamol as a paradigm compound, we present a novel method to characterize pharmacokinetic processes in zebrafish larvae, by combining sensitive bioanalytical methods and nonlinear mixed effects modeling. The developed method allowed quantification of paracetamol and its two major metabolites, paracetamol-sulfate and paracetamol-glucuronide in pooled samples of five lysed zebrafish larvae of 3 days post-fertilization. Paracetamol drug uptake was quantified to be 0.289 pmole/min and paracetamol clearance was quantified to be 1.7% of the total value of the larvae. With an average volume determined to be 0.290 µL, this yields an absolute clearance of 2.96 × 107 L/h, which scales reasonably well with clearance rates in higher vertebrates. The developed methodology will improve the success rate of drug screens in zebrafish larvae and the translation potential of findings, by allowing the establishment of accurate exposure profiles and thereby also the establishment of concentration-effect relationships.


Asunto(s)
Acetaminofén/farmacocinética , Analgésicos no Narcóticos/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Modelos Teóricos , Pez Cebra/metabolismo , Animales , Cromatografía Liquida , Espectrometría de Masas , Dinámicas no Lineales
5.
Antimicrob Agents Chemother ; 59(2): 753-62, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25385118

RESUMEN

The translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data from Mycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models of in vivo Mycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


Asunto(s)
Antituberculosos/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Investigación Biomédica Traslacional/métodos , Tuberculosis/tratamiento farmacológico , Animales , Larva/efectos de los fármacos
6.
J Vis Exp ; (88): e51649, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24998295

RESUMEN

Zebrafish are becoming a valuable tool in the preclinical phase of drug discovery screenings as a whole animal model with high throughput screening possibilities. They can be used to bridge the gap between cell based assays at earlier stages and in vivo validation in mammalian models, reducing, in this way, the number of compounds passing through to testing on the much more expensive rodent models. In this light, in the present manuscript is described a new high throughput pipeline using zebrafish as in vivo model system for the study of Staphylococcus epidermidis and Mycobacterium marinum infection. This setup allows the generation and analysis of large number of synchronous embryos homogenously infected. Moreover the flexibility of the pipeline allows the user to easily implement other platforms to improve the resolution of the analysis when needed. The combination of the zebrafish together with innovative high throughput technologies opens the field of drug testing and discovery to new possibilities not only because of the strength of using a whole animal model but also because of the large number of transgenic lines available that can be used to decipher the mode of action of new compounds.


Asunto(s)
Antibacterianos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Pez Cebra/microbiología , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero , Femenino , Masculino , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo
7.
Arch Toxicol ; 87(5): 807-23, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23559145

RESUMEN

The whole zebrafish embryo model (ZFE) has proven its applicability in developmental toxicity testing. Since functional hepatocytes are already present from 36 h post fertilization onwards, whole ZFE have been proposed as an attractive alternative to mammalian in vivo models in hepatotoxicity testing. The goal of the present study is to further underpin the applicability of whole ZFE for hepatotoxicity testing by combining histopathology and next-generation sequencing-based gene expression profiling. To this aim, whole ZFE and adult zebrafish were exposed to a set of hepatotoxic reference compounds. Histopathology revealed compound and life-stage-specific effects indicative of toxic injury in livers of whole ZFE and adult zebrafish. Next-generation sequencing (NGS) was used to compare transcript profiles in pooled individual RNA samples of whole ZFE and livers of adult zebrafish. This revealed that hepatotoxicity-associated expression can be detected beyond the overall transcription noise in the whole embryo. In situ hybridization verified liver specificity of selected highly expressed markers in whole ZFE. Finally, cyclosporine A (CsA) was used as an illustrative case to support applicability of ZFE in hepatotoxicity testing by comparing CsA-induced gene expression between ZFE, in vivo mouse liver and HepaRG cells on the levels of single genes, pathways and transcription factors. While there was no clear overlap on single gene level between the whole ZFE and in vivo mouse liver, strong similarities were observed between whole ZFE and in vivo mouse liver in regulated pathways related to hepatotoxicity, as well as in relevant overrepresented transcription factors. In conclusion, both the use of NGS of pooled RNA extracts analysis combined with histopathology and traditional microarray in single case showed the potential to detect liver-related genes and processes within the transcriptome of a whole zebrafish embryo. This supports the applicability of the whole ZFE model for compound-induced hepatotoxicity screening.


Asunto(s)
Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Xenobióticos/toxicidad , Pez Cebra/fisiología , Alternativas a las Pruebas en Animales , Animales , Línea Celular Tumoral , Ciclosporina/toxicidad , Femenino , Perfilación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación in Situ , Estadios del Ciclo de Vida/efectos de los fármacos , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Análisis de Secuencia de ARN , Especificidad de la Especie
8.
Birth Defects Res C Embryo Today ; 93(2): 115-33, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21671352

RESUMEN

Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.


Asunto(s)
Investigación Biomédica/métodos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Técnicas de Cultivo de Embriones/métodos , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Pruebas de Toxicidad/métodos , Tuberculosis/fisiopatología , Pez Cebra , Animales , Embrión no Mamífero , Femenino , Fluorescencia , Humanos , Larva , Microfluídica/métodos , Embarazo
9.
PLoS One ; 6(2): e16779, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21390204

RESUMEN

One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo.


Asunto(s)
Biomarcadores/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Tuberculosis/diagnóstico , Animales , Antituberculosos/aislamiento & purificación , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Humanos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/fisiología , Pronóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología
10.
Planta ; 221(4): 459-70, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15645302

RESUMEN

Androgenesis represents one of the most fascinating examples of cell differentiation in plants. In barley, the conversion of stressed uninucleate microspores into embryo-like structures is highly efficient. One of the bottlenecks in this process is the successful release of embryo-like structures out of the exine wall of microspores. In the present work, morphological and biochemical studies were performed during the transition from multicellular structures to globular embryos. Exine wall rupture and subsequent globular embryo formation were observed only in microspores that divided asymmetrically. Independent divisions of the generative and the vegetative nuclei gave rise to heterogeneous multicellular structures, which were composed of two different cellular domains: small cells with condensed chromatin structure and large cells with normal chromatin structure. During exine wall rupture, the small cells died and their death marked the site of exine wall rupture. Cell death in the small cell domain showed typical features of plant programmed cell death. Chromatin condensation and DNA degradation preceded cell detachment and cytoplasm dismantling, a process that was characterized by the formation of vesicles and vacuoles that contained cytoplasmic material. This morphotype of programmed cell death was accompanied by an increase in the activity of caspase-3-like proteases. The orchestration of such a death program culminated in the elimination of the small generative domain, and further embryogenesis was carried out by the large vegetative domain. To date, this is the first report to show evidence that programmed cell death takes part in the development of microspore-derived embryos.


Asunto(s)
Apoptosis/fisiología , Diferenciación Celular/fisiología , Hordeum/embriología , Polen/citología
11.
Plant Mol Biol ; 55(6): 781-96, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15604716

RESUMEN

Genes of the KN1-like homeobox (KNOX) class 1 encode transcription factors involved in shoot apical meristem development and maintenance. We studied the subcellular localization of Green Fluorescent Protein-tagged rice KNOX proteins (Oskn1-3) after particle bombardment of onion and rice cells and after transformation of Arabidopsis and rice with constitutive and inducible expression constructs. In all test systems, the three rice KNOX proteins showed nuclear and cytoplasmic localization patterns. However, Oskn1 additionally showed in some cells a distribution over punctae moving randomly in the cytosol. Use of an inducible expression system indicated a nuclear presence of Oskn1 in cells of the shoot apical meristem and post-transcriptional down-regulation in early leaf primordia. Arabidopsis and rice test systems were used to study effects of plant hormones and auxin transport inhibition on KNOX protein localization. Application of GA3 or 1-NAA shifted protein localization completely to the cytoplasm and resulted in loss of the punctae formed by Oskn1. Conversely, NPA application induced a complete nuclear localization of the KNOX proteins. To study intercellular movement of the KNOX proteins we set up a novel co-bombardment assay in which trafficking of untagged KNOX proteins was visualized through the co-trafficking of green fluorescent or blue fluorescent marker proteins. In multiple independent experiments Oskn1 trafficked more extensively to neighboring cells than Oskn2 and Oskn3. Differences in the localization and trafficking properties of Oskn1, Oskn2 and Oskn3 correlate with differences in mRNA localization patterns and functional differences between the rice KNOX genes and their putative orthologues from other species.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Compuestos de Bencilo/farmacología , Giberelinas/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Ácidos Naftalenoacéticos/farmacología , Cebollas/citología , Cebollas/genética , Cebollas/metabolismo , Oryza/genética , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Purinas/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transfección
12.
Mol Plant Microbe Interact ; 15(4): 313-22, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12026169

RESUMEN

We have isolated and characterized a Lotus japonicus gene (Ljsbp) encoding a putative polypeptide with striking homology to the mammalian 56-kDa selenium-binding protein (SBP). cDNA clones homologous to LjSBP were also isolated from soybean, Medicago sativa, and Arabidopsis thaliana. Comparative expression studies in L japonicus and A. thaliana showed that sbp transcripts are present in various tissues and at different levels. Especially in L japonicus nodules and seedpods and A. thaliana siliques, sbp expression appears to be developmentally up-regulated. sbp Gene transcripts were localized by in situ hybridization in the infected cells and vascular bundles of young nodules, while in mature nodules, low levels of expression were only detected in the parenchymatous cells. Expression of sbp transcripts in young seedpods and siliques was clearly visible in vascular tissues and embryos, while in embryos, low levels of expression were detected in the root epidermis and the vascular bundles. Polyclonal antibodies raised against a truncated LjSBP recombinant protein recognized a polypeptide of about 60 kDa in nodule extracts. Immunohistochemical experiments showed that accumulation of LjSBP occurred in root hairs, in the root epidermis above the nodule primordium, in the phloem of the vasculature, and abundantly in the infected cells of young nodules. Irrespective of the presence of rhizobia, expression of SBP was also observed in root tips, where it was confined in the root epidermis and protophloem cells. We hypothesize that LjSBP may have more than one physiological role and can be implicated in controlling the oxidation/reduction status of target proteins, in vesicular Golgi transport, or both.


Asunto(s)
Proteínas Portadoras/genética , Lotus/genética , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Secuencia Conservada/genética , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Inmunohistoquímica , Hibridación in Situ , Lotus/química , Mamíferos , Medicago/genética , Datos de Secuencia Molecular , Epidermis de la Planta/metabolismo , Epidermis de la Planta/microbiología , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Semillas/metabolismo , Proteínas de Unión al Selenio , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA