Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Host Microbe ; 29(10): 1573-1588.e7, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34453895

RESUMEN

Despite overall success, T cell checkpoint inhibitors for cancer treatment are still only efficient in a minority of patients. Recently, intestinal microbiota was found to critically modulate anti-cancer immunity and therapy response. Here, we identify Clostridiales members of the gut microbiota associated with a lower tumor burden in mouse models of colorectal cancer (CRC). Interestingly, these commensal species are also significantly reduced in CRC patients compared with healthy controls. Oral application of a mix of four Clostridiales strains (CC4) in mice prevented and even successfully treated CRC as stand-alone therapy. This effect depended on intratumoral infiltration and activation of CD8+ T cells. Single application of Roseburia intestinalis or Anaerostipes caccae was even more effective than CC4. In a direct comparison, the CC4 mix supplementation outperformed anti-PD-1 therapy in mouse models of CRC and melanoma. Our findings provide a strong preclinical foundation for exploring gut bacteria as novel stand-alone therapy against solid tumors.


Asunto(s)
Terapia Biológica , Clostridiales/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Microbioma Gastrointestinal , Animales , Linfocitos T CD8-positivos/inmunología , Clostridiales/fisiología , Neoplasias Colorrectales/microbiología , Humanos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Simbiosis
2.
J Crohns Colitis ; 13(6): 785-797, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30590526

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel disease [IBD] is accompanied by lesions in the epithelial barrier, which allow translocation of bacterial products from the gut lumen to the host's circulation. IMM-124E is a colostrum-based product containing high levels of anti-E.coli-LPS IgG, and might limit exposure to bacterial endotoxins. Here, we investigated whether IMM-124E can ameliorate intestinal inflammation. METHODS: Acute colitis was induced in WT C57Bl/6J mice by administration of 2.5% dextran sodium sulphate [DSS] for 7 days. T cell transfer colitis was induced via transfer of 0.5 x 106 naïve T cells into RAG2-/- C57Bl/6J mice. IMM-124E was administered daily by oral gavage, either preventively or therapeutically. RESULTS: Treatment with IMM-124E significantly ameliorated colitis in acute DSS colitis and in T cell transfer colitis. Maximum anti-inflammatory effects were detected at an IMM-124E concentration of 100 mg/kg body weight, whereas 25 mg/kg and 500 mg/kg were less effective. Histology revealed reduced levels of infiltrating immune cells and less pronounced mucosal damage. Flow cytometry revealed reduced numbers of effector T helper cells in the intestine, whereas levels of regulatory T cells were enhanced. IMM-124E treatment reduced the DSS-induced increase of serum levels of lipopolysaccharide [LPS]-binding protein, indicating reduced systemic LPS exposure. CONCLUSIONS: Our results demonstrate that oral treatment with IMM-124E significantly reduces intestinal inflammation, via decreasing the accumulation of pathogenic T cells and concomitantly increasing the induction of regulatory T cells. Our study confirms the therapeutic efficacy of IMM-124E in acute colitis and suggests that administration of IMM-124E might represent a novel therapeutic strategy to induce or maintain remission in chronic colitis.


Asunto(s)
Colitis/tratamiento farmacológico , Calostro/química , Animales , Western Blotting , Bovinos , Colitis/patología , Colon/patología , Calostro/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Inmunoglobulina G/inmunología , Inmunoglobulina G/uso terapéutico , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo
3.
Digestion ; 90(3): 179-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401758

RESUMEN

BACKGROUND/AIMS: Anthocyanins are plant-derived dietary components that are highly abundant, for example, in bilberries. We have previously demonstrated that anthocyanins exert anti-inflammatory properties in mouse colitis models and ameliorate disease activity in ulcerative colitis patients. Here, we studied the molecular mechanisms through which anthocyanin-containing bilberry extract (BE) exerts anti-inflammatory effects in human monocytic THP-1 cells. METHODS: THP-1 cells were pre-incubated with BE 20 min prior to TNF-α or IFN-γ (100 ng/ml each) stimulation. Signalling protein activation was studied by Western blotting, mRNA expression by quantitative PCR and cytokine secretion by ELISA. RESULTS: IFN-γ-induced phosphorylation of STAT1 and STAT3 was significantly reduced by BE co-treatment. Consequently, levels of mRNA expression and/or cytokine secretion of MCP-1, IL-6, TNF-α, ICAM-1, and T-bet were lower with BE co-treatment. In contrast, BE enhanced TNF-α-mediated p65-NF-κB phosphorylation but reduced ERK1/2 phosphorylation. BE co-treatment further increased TNF-α-induced mRNA expression and secretion of NF-κB target genes, such as IL-6, IL-8, and MCP-1, while mRNA levels of ICAM-1 were reduced. CONCLUSIONS: BE co-treatment reduced IFN-γ-induced signal protein activation, pro-inflammatory gene expression, and cytokine secretion, whereas it enhanced TNF-α-induced responses. These findings suggest a distinct role for anthocyanins in modulating inflammatory responses that need to be further studied to fully understand anthocyanin-mediated effects.


Asunto(s)
Antocianinas/farmacología , Citocinas/metabolismo , Interferón gamma/antagonistas & inhibidores , Monocitos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Vaccinium myrtillus/química , Animales , Antocianinas/aislamiento & purificación , Antiinflamatorios/farmacología , Línea Celular , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/farmacología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Monocitos/inmunología , FN-kappa B/química , Fosforilación/efectos de los fármacos , Extractos Vegetales , Conejos , Factor de Transcripción STAT1/química , Factor de Transcripción STAT3/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA