Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 30(1): 111-128.e6, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031093

RESUMEN

Neuropeptide Y (NPY) exerts a powerful orexigenic effect in the hypothalamus. However, extra-hypothalamic nuclei also produce NPY, but its influence on energy homeostasis is unclear. Here we uncover a previously unknown feeding stimulatory pathway that is activated under conditions of stress in combination with calorie-dense food; NPY neurons in the central amygdala are responsible for an exacerbated response to a combined stress and high-fat-diet intervention. Central amygdala NPY neuron-specific Npy overexpression mimics the obese phenotype seen in a combined stress and high-fat-diet model, which is prevented by the selective ablation of Npy. Using food intake and energy expenditure as readouts, we demonstrate that selective activation of central amygdala NPY neurons results in increased food intake and decreased energy expenditure. Mechanistically, it is the diminished insulin signaling capacity on central amygdala NPY neurons under combined stress and high-fat-diet conditions that leads to the exaggerated development of obesity.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Animales , Temperatura Corporal , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/fisiología , Electrofisiología , Metabolismo Energético/fisiología , Inmunohistoquímica , Hibridación Fluorescente in Situ , Insulina/metabolismo , Masculino , Ratones , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30209240

RESUMEN

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Estrés Fisiológico , Neuronas Adrenérgicas/patología , Animales , Factor Neurotrófico Ciliar/genética , Hipotálamo/patología , Locus Coeruleus/patología , Ratones , Ratones Noqueados , Ratas
3.
Neuropharmacology ; 88: 122-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25229716

RESUMEN

Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, ß2, ß3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, ß2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei.


Asunto(s)
Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo , Receptores de GABA-A/metabolismo , Tálamo/metabolismo , Animales , Autorradiografía , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Lateralidad Funcional , Expresión Génica , Hipocampo/patología , Inmunohistoquímica , Hibridación in Situ , Captura por Microdisección con Láser , Masculino , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Tálamo/patología
4.
Diabetes ; 55(1): 19-26, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16380472

RESUMEN

Neuropeptide Y receptors are critical regulators of energy homeostasis, but the functional interactions and relative contributions of Y receptors and the environment in this process are unknown. We measured the effects of an ad libitum diet of normal or high-fat food on energy balance in mice with single, double, or triple deficiencies of Y1, Y2, or Y4 receptors. Whereas wild-type mice developed diet-induced obesity, Y2Y4 double knockouts did not. In contrast, Y1 knockout or Y1Y2 or Y1Y4 receptor double knockout mice developed an exacerbated diet-induced obesity syndrome. Remarkably, the antiobesity effect of Y2Y4 deficiency was stronger than the obesogenic effect of Y1 deficiency, since Y1Y2Y4 triple knockouts did not develop obesity on the high-fat diet. Resistance to diet-induced obesity in Y2Y4 knockouts was associated with reduced food intake and improved glucose tolerance in the absence of changes in total physical activity. Fecal concentration of free fatty acids was significantly increased in Y2Y4 knockouts in association with a significantly reduced bile acid pool and marked alterations in intestinal morphology. In addition, hypothalamic proopiomelanocortin expression was decreased in diet-induced obesity (in both wild-type and Y1 receptor knockout mice) but not in obesity-resistant Y2Y4 receptor knockout mice fed a high-fat diet. Therefore, deletion of Y2 and Y4 receptors synergistically protects against diet-induced obesity, at least partially via changes in food intake and hypothalamic proopiomelanocortin expression.


Asunto(s)
Grasas de la Dieta/farmacología , Obesidad/genética , Obesidad/prevención & control , Receptores de Neuropéptido Y/deficiencia , Receptores de Neuropéptido Y/metabolismo , Animales , Dieta , Conducta Alimentaria , Regulación de la Expresión Génica , Intolerancia a la Glucosa , Hipotálamo/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/anatomía & histología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Receptores de Neuropéptido Y/genética , Termogénesis
5.
Proc Natl Acad Sci U S A ; 99(13): 8938-43, 2002 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12072562

RESUMEN

Neuropeptide Y is implicated in energy homeostasis, and contributes to obesity when hypothalamic levels remain chronically elevated. To investigate the specific role of hypothalamic Y2 receptors in this process, we used a conditional Y2 knockout model, using the Cre-lox system and adenoviral delivery of Cre-recombinase. Hypothalamus-specific Y2-deleted mice showed a significant decrease in body weight and a significant increase in food intake that was associated with increased mRNA levels for the orexigenic NPY and AgRP, as well as the anorexic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in the arcuate nucleus. These hypothalamic changes persisted until at least 34 days after Y2 deletion, yet the effect on body weight and food intake subsided within this time. Plasma concentrations of pancreatic polypeptide and corticosterone were 3- to 5-fold increased in hypothalamus-specific Y2 knockout mice. Germ-line Y2 receptor knockout also produced a significant increase in plasma levels of pancreatic polypeptide. However, these mice differed from conditional knockout mice in that they showed a sustained reduction in body weight and adiposity associated with increased NPY and AgRP but decreased POMC and CART mRNA levels in the arcuate nucleus. The transience of the observed effects on food intake and body weight in the hypothalamus-specific Y2 knockout mice, and the difference of this model from germ-line Y2 knockout mice, underline the importance of conditional models of gene deletion, because developmental, secondary, or extrahypothalamic mechanisms may mask such effects in germ-line knockouts.


Asunto(s)
Peso Corporal , Hipotálamo/fisiología , Receptores de Neuropéptido Y/fisiología , Animales , Secuencia de Bases , Corticosterona/sangre , Cartilla de ADN , Conducta Alimentaria , Eliminación de Gen , Células Germinativas , Hibridación in Situ , Ratones , Ratones Noqueados , Polipéptido Pancreático/sangre , Receptores de Neuropéptido Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA