Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biometals ; 29(6): 1019-1033, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27757565

RESUMEN

Translocation of bacteria, primarily Gram-negative pathogenic flora, from the intestinal lumen into the circulatory system leads to sepsis. In newborns, and especially very low birth weight infants, sepsis is a major cause of morbidity and mortality. The results of recently conducted clinical trials suggest that lactoferrin, an iron-binding protein that is abundant in mammalian colostrum and milk, may be an effective agent in preventing sepsis in newborns. However, despite numerous basic studies on lactoferrin, very little is known about how metal saturation of this protein affects a host's health. Therefore, the main objective of this study was to elucidate how iron-depleted, iron-saturated, and manganese-saturated forms of lactoferrin regulate intestinal barrier function via interactions with epithelial cells and macrophages. For these studies, a human intestinal epithelial cell line, Caco-2, was used. In this model, none of the tested lactoferrin forms induced higher levels of apoptosis or necrosis. There was also no change in the production of tight junction proteins regardless of lactoferrin metal saturation status. None of the tested forms induced a pro-inflammatory response in Caco-2 cells or in macrophages either. However, the various lactoferrin forms did effectively inhibit the pro-inflammatory response in macrophages that were activated with lipopolysaccharide with the most potent effect observed for apolactoferrin. Lactoferrin that was not bound to its cognate receptor was able to bind and neutralize lipopolysaccharide. Lactoferrin was also able to neutralize microbial-derived antigens, thereby potentially reducing their pro-inflammatory effect. Therefore, we hypothesize that lactoferrin supplementation is a relevant strategy for preventing sepsis.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Lactoferrina/química , Lactoferrina/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Apoproteínas/química , Apoptosis/efectos de los fármacos , Células CACO-2 , Bovinos , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Gastroenteritis/prevención & control , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Hierro/química , Lactoferrina/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Manganeso/química , Proteínas de Uniones Estrechas/metabolismo
2.
Anal Bioanal Chem ; 405(15): 5191-200, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23604471

RESUMEN

Lactoferrin is considered as a part of the innate immune system that plays a crucial role in preventing bacterial growth, mostly via an iron sequestration mechanism. Recent data show that bovine lactoferrin prevents late-onset sepsis in preterm very low birth weight neonates by serving as an iron chelator for some bacterial strains; thus, it is very important to control the iron saturation level during diet supplementation. An accurate estimation of lactoferrin iron saturation is essential not only because of its clinical applications but also for a wide range of biochemical experiments. A comprehensive method for the quantification of iron saturation in lactoferrin preparations was developed to obtain a calibration curve enabling the determination of iron saturation levels relying exclusively on the defined ratio of absorbances at 280 and 466 nm (A(280/466)). To achieve this goal, selected techniques such as spectrophotometry, ELISA, and ICP-MS were combined. The ability to obtain samples of lactoferrin with determination of its iron content in a simple and fast way has been proven to be very useful. Furthermore, a similar approach could easily be implemented to facilitate the determination of iron saturation level for other metalloproteins in which metal binding results in the appearance of a distinct band in the visible part of the spectrum.


Asunto(s)
Hierro/química , Lactoferrina/química , Apoproteínas/química , Cromatografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA