Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Pharmacol ; 945: 175643, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36882148

RESUMEN

The increased use of the stimulant drug, 3,4-methylenedioxymethamphetamine (MDMA), more commonly known as Ecstasy, Molly or X, has been linked to the development of life-threatening hyperthermia in human and animal models. The current study aimed to investigate the role of the gut-adrenal axis in MDMA-induced hyperthermia by assessing the influence of the acute exogenous supplementation with norepinephrine (NE) or corticosterone (CORT) to adrenalectomized (ADX) rats following MDMA administration. MDMA (10 mg/kg, sc) resulted in significant increase of body temperature in SHAM animals compared to ADX animals at 30-, 60- and 90-min timepoints post-MDMA treatment. The attenuated MDMA-mediated hyperthermic response seen in ADX animals was partially restored by the exogenous administration of NE (3 mg/kg, ip) or CORT (3 mg/kg, ip) 30 min after MDMA treatment. Additionally, 16 S rRNA analysis revealed distinct changes in the gut microbiome composition and diversity notable by the higher abundance of minor phyla Actinobacteria, Verrucomicrobia and Proteobacteria in ADX rats compared to control and SHAM rats. Furthermore, MDMA administration resulted in marked changes in the dominant phyla Firmicutes and Bacteroidetes and minor phyla Actinobacteria, Verrucomicrobia and Proteobacteria in ADX animals. The most notable changes in the gut microbiome upon CORT treatment were reported with increase in Bacteroidetes and decrease in Firmicutes phyla whereas NE treatment resulted in increase in Firmicutes and decrease in Bacteroidetes and Proteobacteria post treatment. These results suggest a correlation between the sympathoadrenal axis, gut microbiome structure and diversity and MDMA-mediated hyperthermia.


Asunto(s)
Microbioma Gastrointestinal , Hipertermia Inducida , N-Metil-3,4-metilenodioxianfetamina , Humanos , Ratas , Animales , N-Metil-3,4-metilenodioxianfetamina/farmacología , Adrenalectomía , Temperatura Corporal , Corticosterona/farmacología , Norepinefrina
2.
Int J Hyperthermia ; 40(1): 2159072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36581324

RESUMEN

OBJECTIVE: To investigate the effect of bidirectional fecal microbial transplant (FMT) between male and female rats on methamphetamine (MA)-induced hyperthermia. METHODS: FMT was performed between male and female rats prior to MA (10 mg/kg, sc) treatment. Core body temperature, plasma drug and norepinephrine (NE) levels were measured and compared between treatment groups. 16S rRNA gene sequencing of bacterial communities between male and female rats was performed. RESULTS: MA treatment resulted in significantly higher core body temperatures in male groups (control and FMT-treated) compared to MA-treated female groups (control and FMT-treated). Plasma concentrations of MA and amphetamine were higher in females than males. Whereas, plasma norepinephrine (NE) levels were not different between male and female rats 90 minutes after MA treatment. At the phyla level, the microbiome of male and female control rats were dominated by Firmicutes and Bacteroidetes. Males had a higher relative abundance of Firmicutes and lower relative abundances of Bacteroidetes than females. The FMT procedure changed the recipient group towards their donor with males getting closer to their donors than females. In the control groups following MA treatment, Firmicutes increased and Bacteroides decreased in females and males. Conversely, in the FMT treatment groups following MA treatment, Firmicutes decreased while Bacteroidetes increased in females and males. CONCLUSIONS: Although definite differences in the structure and diversity of the gut microbiome were observed using 16S rRNA gene sequencing of bacterial communities between male and female rats, these differences do not seem to contribute to the sex-based differences in MA-induced hyperthermia.


Asunto(s)
Infecciones por Clostridium , Hipertermia Inducida , Metanfetamina , Masculino , Femenino , Ratas , Animales , Heces/microbiología , ARN Ribosómico 16S/genética , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Bacterias
3.
Sci Rep ; 9(1): 4313, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867489

RESUMEN

Hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) can be life-threatening. Here, we investigate the role of the gut microbiome and TGR5 bile acid receptors in MDMA-mediated hyperthermia. Fourteen days prior to treatment with MDMA, male Sprague-Dawley rats were provided water or water treated with antibiotics. Animals that had received antibiotics displayed a reduction in gut bacteria and an attenuated hyperthermic response to MDMA. MDMA treated animals showed increased uncoupling protein 1 (UCP1) and TGR5 expression levels in brown adipose tissue and skeletal muscle while increased expression of UCP3 was observed only in skeletal muscle. Antibiotics prior to MDMA administration significantly blunted these increases in gene expression. Furthermore, inhibition of the TGR5 receptor with triamterene or of deiodinase II downstream of the TGR5 receptor with iopanoic acid also resulted in the attenuation of MDMA-induced hyperthermia. MDMA-treatment enriched the relative proportion of a Proteus mirabilis strain in the ceca of animals not pre-treated with antibiotics. These findings suggest a contributing role for the gut microbiota in MDMA-mediated hyperthermia and that MDMA treatment can trigger a rapid remodeling of the composition of the gut microbiome.


Asunto(s)
Fiebre/microbiología , Hipertermia Inducida , Microbiota , N-Metil-3,4-metilenodioxianfetamina/farmacología , Animales , Fiebre/inducido químicamente , Masculino , Microbiota/efectos de los fármacos , Proteus mirabilis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 3/metabolismo
4.
J Physiol ; 594(24): 7455-7464, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27647490

RESUMEN

KEY POINTS: Both uncoupling protein 1 (UCP1) and UCP3 are important for mammalian thermoregulation. UCP1 and UCP3 in brown adipose tissue mediate early and late phases of sympathomimetic thermogenesis, respectively. Lipopolysaccharide thermogenesis requires skeletal muscle UCP3 but not UCP1. Acute noradrenaline-induced hyperthermia requires UCP1 but not UCP3. Loss of both UCP1 and UCP3 accelerate the loss of body temperature compared to UCP1KO alone during acute cold exposure. ABSTRACT: Uncoupling protein 1 (UCP1) is the established mediator of brown adipose tissue-dependent thermogenesis. In contrast, the role of UCP3, expressed in both skeletal muscle and brown adipose tissue, in thermoregulatory physiology is less well understood. Here, we show that mice lacking UCP3 (UCP3KO) have impaired sympathomimetic (methamphetamine) and completely abrogated lipopolysaccharide (LPS) thermogenesis, but a normal response to noradrenaline. By comparison, UCP1 knockout (UCP1KO) mice exhibit blunted methamphetamine and fully inhibited noradrenaline thermogenesis, but an increased febrile response to LPS. We further establish that mice lacking both UCP1 and 3 (UCPDK) fail to show methamphetamine-induced hyperthermia, and have a markedly accelerated loss of body temperature and survival after cold exposure compared to UCP1KO mice. Finally, we show that skeletal muscle-specific human UCP3 expression is able to significantly rescue LPS, but not sympathomimetic thermogenesis blunted in UCP3KO mice. These studies identify UCP3 as an important mediator of physiological thermogenesis and support a renewed focus on targeting UCP3 in metabolic physiology.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Proteína Desacopladora 1/fisiología , Proteína Desacopladora 3/fisiología , Animales , Frío , Hipertermia Inducida , Lipopolisacáridos/farmacología , Masculino , Metanfetamina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Norepinefrina/farmacología , Proteína Desacopladora 1/genética , Proteína Desacopladora 3/genética
5.
J Pharmacol Exp Ther ; 320(1): 274-80, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17012607

RESUMEN

Thyroid hormone (TH) plays a fundamental role in thermoregulation, yet the molecular mediators of its effects are not fully defined. Recently, skeletal muscle (SKM) uncoupling protein (UCP) 3 was shown to be an important mediator of the thermogenic effects of the widely abused sympathomimetic agents 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) and methamphetamine. Expression of UCP3 is regulated by TH. Activation of UCP3 is indirectly regulated by norepinephrine (NE) and is dependent upon the availability of free fatty acids (FFAs). We hypothesized that UCP3 may be a molecular link between TH and hyperthermia, requiring increased levels of both NE and FFAs to accomplish the thermogenic effect. Here, we demonstrate that MDMA (40 mg/kg s.c.) significantly increases plasma FFA levels 30 min after treatment. Pharmacologically increasing NE levels through the inhibition of phenylethanolamine N-methyltransferase with +/-2,3-dichloro-alpha-methylbenzylamine potentiated the hyperthermic effects of a 20 mg/kg dose of MDMA. Using Western blots and regression analysis, we further illustrated that chronic hyperthyroidism in rats potentiates the hyperthermic effects of MDMA and increases levels of SKM UCP3 protein in a linear fashion according to levels of circulating plasma TH. Conversely, chronic hypothyroidism results in a hypothermic response to MDMA that is directly proportionate to decreased UCP3 expression. Acute TH supplementation did not change the skeletal muscle UCP3 expression levels or temperature responses to MDMA. These findings suggest that, although MDMA-induced hyperthermia appears to result from increased NE and FFA levels, susceptibility is ultimately determined by TH regulation of UCP3-dependent thermogenesis.


Asunto(s)
Ácidos Grasos no Esterificados/sangre , Canales Iónicos/análisis , Proteínas Mitocondriales/análisis , Músculo Esquelético/química , Norepinefrina/fisiología , Simpatomiméticos/farmacología , Termogénesis/efectos de los fármacos , Glándula Tiroides/fisiología , Animales , Masculino , N-Metil-3,4-metilenodioxianfetamina/farmacología , Ratas , Ratas Sprague-Dawley , Tiroxina/sangre , Proteína Desacopladora 3
6.
Clin Lab Med ; 26(1): 165-84, ix, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16567230

RESUMEN

Normal thermogenesis requires a complex interaction between systems that generate and dissipate heat. Serving as director of thermogenesis, the hypothalamus activates the sympathetic nervous system along with the thyroid and adrenal glands to respond to changes in body temperature. Working in concert, these systems result in heat generation by uncoupling of oxidative phosphorylation, combined with impaired heat dissipation through vasoconstriction. In this article, the authors discuss serotonin and sympathomimetic syndromes, neuroleptic malignant syndrome,and malignant hyperthermia and how these syndromes affect the hypothalamic and sympathetic nervous systems, resulting at times in severe hyperthermia. Current treatment recommendations and future trends in treatment are also discussed.


Asunto(s)
Hipertermia Inducida , Termogénesis/efectos de los fármacos , Xenobióticos/envenenamiento , Animales , Humanos , Síndrome Neuroléptico Maligno/etiología , Serotonina/envenenamiento
7.
Biochem Pharmacol ; 68(7): 1339-43, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15345323

RESUMEN

Here, we determined the extent of hypothalamic-pituitary-thyroid (HPT) axis and uncoupling protein-3 (UCP3) involvement in methamphetamine (METH)-induced hyperthermia. Sprague-Dawley rats treated with METH (40mg/kg, s.c.) responded with a hyperthermic response that peaked 1h post-treatment and was sustained through 2h. After METH treatment, thyroparathyroidectomized (TX) animals developed hypothermia that was sustained for the 3h monitoring period. In TX animals supplemented for 5 days with levothyroxine (100microg/kg, s.c.), METH-induced hypothermia was eliminated and the hyperthermic response was restored. Thyroid hormone levels (T3 and T4), measured in euthyroid animals 1h after METH, remained unchanged. As seen in rats, 1h post-METH (20mg/kg, i.p.) treatment, wild-type (WT) mice developed profound hyperthermia that was sustained for 2h. In marked contrast, UCP3-/- animals developed a markedly blunted hyperthermic response at 1h compared to WT animals. Furthermore, UCP3-/- mice could not sustain this slight elevation in temperature. Two hours post-METH treatment, UCP3-/- animal temperature returned to baseline temperatures. UCP3-/- mice were also completely protected against the lethal effects of METH, whereas 40% of WT mice succumbed to the hyperthermia. These findings suggest that thyroid hormone plays a permissive role in the thermogenic effects induced by METH. Furthermore, the findings indicate that UCP3 plays a major role in the development and maintenance of the hyperthermia induced by METH. The relationship of these results to the hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) is also discussed.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Proteínas Portadoras/fisiología , Hipertermia Inducida , Metanfetamina/farmacología , Hormonas Tiroideas/fisiología , Animales , Canales Iónicos , Masculino , Ratones , Proteínas Mitocondriales , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , N-Metil-3,4-metilenodioxianfetamina/farmacología , Ratas , Ratas Sprague-Dawley , Recto/efectos de los fármacos , Recto/fisiología , Proteína Desacopladora 3
8.
Acad Emerg Med ; 11(7): 723-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15231458

RESUMEN

OBJECTIVES: Use of the drug ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) can result in life-threatening hyperthermia. Agents that uncouple mitochondrial oxidative phosphorylation are known to cause severe hyperthermia. In the present study, the authors tested the hypothesis that MDMA directly uncouples oxidative phosphorylation in rat liver mitochondria. METHODS: Effects on mitochondrial bioenergetics were assessed both in vitro and ex vivo. In vitro studies consisted of measuring the effects of MDMA (0.1-5.0 mmol/L) on states of respiration in isolated rat liver mitochondria and on mitochondrial membrane potential in a rat liver cell line. In ex vivo studies, mitochondrial rates of respiration were measured in the livers of rats one hour after treatment with MDMA (40 mg/kg subcutaneously). RESULTS: With the in vitro mitochondrial preparations, only concentrations of 5 mmol/L MDMA showed evidence of uncoupling with a slight increase in state 4 respiration and a corresponding decrease in the respiratory control index. MDMA (0.1-5.0 mmol/L) failed to decrease the mitochondrial membrane potential in 3,3-dihexyloxacarbocyanide iodide-stained WB-344 cells after either one or 24 hours of incubation. Ex vivo rates of respiration obtained from the livers of rats one hour after treatment with MDMA (40 mg/kg subcutaneously) showed no evidence of mitochondrial uncoupling. CONCLUSIONS: These data suggest that while high concentrations of MDMA have some mild uncoupling effects in isolated mitochondria, these effects do not translate to cell culture or ex vivo studies in treated animals. These data do not support the view that the hyperthermia induced by MDMA is from a direct effect on mitochondrial oxidative phosphorylation.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , N-Metil-3,4-metilenodioxianfetamina/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA