Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 174(1): 258-275, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28270625

RESUMEN

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coproporfirinógeno Oxidasa/metabolismo , Células Germinativas de las Plantas/metabolismo , Mitocondrias/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Coproporfirinógeno Oxidasa/genética , Coproporfirinógenos/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/crecimiento & desarrollo , Mitocondrias/metabolismo , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
2.
Appl Biochem Biotechnol ; 182(4): 1591-1604, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28130768

RESUMEN

The Arabidopsis thaliana promoter trap mutant Bitrap-112 expressing green fluorescent protein (GFP) gene in the ovules was found to carry transferred DNA (T-DNA) insertion at -309 position of the APETALA2 (AP2) gene. Bitrap-112 line did not show phenotype associated with the AP2 mutation, suggesting that T-DNA insertion did not interrupt the AP2 promoter. Further, head-to-head orientation of GFP and AP2 genes indicated that the AP2 promoter could be bidirectional. A detailed deletion analysis of the upstream sequences of the AP2 gene was done to identify the promoter. GUS assay of transgenic A. thaliana plants carrying various AP2 upstream fragments fused to the uidA gene showed that ~200-bp 5' UTR sequences are capable of driving gene expression at low levels in vegetative tissues whereas inclusion of further upstream sequences (~300 bp) enhanced uidA expression comparable to native AP2 expression levels in various tissues including ovules. In the reverse orientation, the 519-bp AP2 upstream fragment was found to drive gene expression in immature ovules and pollen. Absence of antisense transcripts corresponding to the sequences upstream of AP2 gene in wild-type A. thaliana plants suggests that promoter trapping has uncovered a cryptic promoter, which in reverse orientation is capable of driving gene expression in ovules and anthers.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Óvulo Vegetal/genética , Polen/genética , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia , Regiones no Traducidas 5'/genética , Simulación por Computador , Mutación , Especificidad de Órganos , ARN de Transferencia/genética , Sitio de Iniciación de la Transcripción
3.
Gene ; 554(1): 25-31, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25303872

RESUMEN

Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination. Analysis of cloned nucleotide sequence revealed Ph-glucanase with an open reading frame of 852bp encoding a protein of 283 amino acids with a molecular mass of 31kDa and pI of 4.39. In-silico structure prediction of Ph-glucanase showed homology with that of Hevea brasiliensis (3em5B). Structural stability and enhanced catalytic efficiency in harsh climatic conditions possibly due to the presence of glycosyl hydrolase motif (LGIVISESGWPSAG) and a connecting loop towards inner side and well exposed carbohydrate metabolism domain-COG5309, can readily hydrolyse cell wall sugar moieties. Seeds from the transgenic Arabidopsis plants over-expressing Ph-glucanase showed better germination performance against a wide range of temperatures and abscisic acid (ABA) stress. This can be attributed to the accumulation of Ph-glucanase at both transcript and protein levels during the seed germination in transgenic Arabidopsis. Results confirm that the cloned novel seed specific glucanase from a cold desert plant Podophyllum could be used for the manipulation of different plant species seeds against various harsh conditions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glucano 1,3-beta-Glucosidasa/genética , Proteínas de Plantas/genética , Podophyllum/enzimología , Ácido Abscísico/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Pared Celular/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Endospermo/metabolismo , Germinación , Glucano 1,3-beta-Glucosidasa/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Podophyllum/genética , Homología de Secuencia de Aminoácido , Temperatura
4.
Protoplasma ; 252(1): 41-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24839001

RESUMEN

Superoxide dismutase (SOD) catalyzes the dismutation of superoxide radicals (O2( ·-)) to molecular oxygen (O2) and hydrogen peroxide (H2O2). Previously, we have identified and characterized a thermo-tolerant copper-zinc superoxide dismutase from Potentilla atrosanguinea (PaSOD), which retains its activity in the presence of NaCl. In the present study, we show that cotyledonary explants of PaSOD overexpressing transgenic Arabidopsis thaliana exhibit early callus induction and high shoot regenerative capacity than wild-type (WT) explants. Growth kinetic studies showed that transgenic lines have 2.6-3.3-folds higher growth rate of calli compared to WT. Regeneration frequency of calli developed from transgenic cotyledons was found to be 1.5-2.5-folds higher than that of WT explants on Murashige and Skoog medium supplemented with different concentrations of naphthalene acetic acid (NAA) and 6-benzylaminopurine (BAP) within 2 weeks. A positive regulatory effect of PaSOD and H2O2 was observed on different stages of callusing and regeneration. However, this effect was more pronounced at the early stages of the regeneration processes in transgenic lines as compared to WT. These results clearly indicate that plant regeneration is regulated by endogenous H2O2 and by factors, which enhance its accumulation. Transgenics also exhibited salt stress tolerance with higher SOD activity, chlorophyll content, total soluble sugars, and proline content, while lower ion leakage and less reduction in relative water content, as compared to WT. Thus, it appears that the activation of PaSOD at regeneration stage accompanied by increased H2O2 production can be one of the mechanisms controlling in vitro morphogenesis.


Asunto(s)
Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Tolerancia a la Sal/genética , Superóxido Dismutasa/metabolismo , Plantas Modificadas Genéticamente/genética , Potentilla , Regeneración
5.
J Proteomics ; 78: 26-38, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23153791

RESUMEN

Podophyllum hexandrum Royle (=Sinopodophyllum hexandrum) is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. An effective, conventional propagation method is by seed. However, seed germination is erratic, and seedling survival is low. A marginal increase in Podophyllum seed germination was attained with organic solvents. In the present study an attempt was made to decipher the physiological and biochemical barriers in terms of change in proteins during seed germination of Podophyllum. Comparative 2-DE analysis between un-germinated (dormant) and germinating seeds revealed nearly 113 differentially expressed proteins, whereas Peptide Mass Fingerprint (PMF) analysis of 97 protein spots revealed appearance of 27 proteins, up-accumulation of 11 proteins, down-accumulation of 19 proteins and disappearance of 40 proteins with germination. Identified 59 proteins in the homology search were involved in metabolism (carbohydrate and amino acid metabolism; 20 proteins), ABA/GA signaling (17 proteins) and stress (15 proteins) related proteins. Seven proteins were with unknown function. Two-DE, and MS/MS analysis in conjunction with semi-quantitative RT-PCR data of cell wall hydrolyzing genes, revealed that in Podophyllum the radicle protrusion occurs might be because of the up-accumulation of cell wall hydrolases i.e. ß-1, 3-glucanase and XET which weakens the thick walled micropylar endosperm.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Germinación/fisiología , Proteínas de Plantas/biosíntesis , Proteoma/biosíntesis , Ranunculaceae/metabolismo , Semillas/metabolismo , Proteómica/métodos
6.
Plant Sci ; 198: 27-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23199684

RESUMEN

Aconitum heterophyllum is a high altitude medicinal plant that has become endangered due to overexploitation for their aconitins. The most effective, conventional propagation method for any plant species is by seed. However, in Aconitum seed germination is erratic, and seedling survival is low. In the present study results have been discussed on the possible implication of ethanol treatment on removal of barriers on radical emergence in terms of protein changes. Eighty seven percent of seed germination was achieved in Aconitum with ethanol treatment. Comparative 2-DE analysis of ethanol treated and untreated seed protein profiles in Phase II of germination revealed 40 differentially expressed proteins. Twenty-seven out of 40 proteins were induced, 5 were increased and 8 were repressed. Mass spectrometry and subsequent identification confirmed that these proteins were involved in metabolism, DNA regulation, stress tolerance and plasmamembrane/cell wall biosynthesis/extension processes. These protein changes might be responsible for physiological and physical changes, respectively, resulted in increase in germination percentage. Further, characterization of these proteins will be of great help in understanding the molecular mechanism lying behind enhanced germination in response to ethanol treatment.


Asunto(s)
Aconitum/metabolismo , Etanol/farmacología , Germinación/efectos de los fármacos , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Aconitum/crecimiento & desarrollo , Especies en Peligro de Extinción , Plantas Medicinales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA