Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Cancer ; 46(1): 21-32, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19954965

RESUMEN

Physiologically based modelling of pharmacodynamics/toxicodynamics requires an a priori knowledge on the underlying mechanisms causing toxicity or causing the disease. In the context of cancer, the objective of the expert meeting was to discuss the molecular understanding of the disease, modelling approaches used so far to describe the process, preclinical models of cancer treatment and to evaluate modelling approaches developed based on improved knowledge. Molecular events in cancerogenesis can be detected using 'omics' technology, a tool applied in experimental carcinogenesis, but also for diagnostics and prognosis. The molecular understanding forms the basis for new drugs, for example targeting protein kinases specifically expressed in cancer. At present, empirical preclinical models of tumour growth are in great use as the development of physiological models is cost and resource intensive. Although a major challenge in PKPD modelling in oncology patients is the complexity of the system, based in part on preclinical models, successful models have been constructed describing the mechanism of action and providing a tool to establish levels of biomarker associated with efficacy and assisting in defining biologically effective dose range selection for first dose in man. To follow the concentration in the tumour compartment enables to link kinetics and dynamics. In order to obtain a reliable model of tumour growth dynamics and drug effects, specific aspects of the modelling of the concentration-effect relationship in cancer treatment that need to be accounted for include: the physiological/circadian rhythms of the cell cycle; the treatment with combinations and the need to optimally choose appropriate combinations of the multiple agents to study; and the schedule dependence of the response in the clinical situation.


Asunto(s)
Antineoplásicos/farmacología , Transformación Celular Neoplásica/genética , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Transformación Celular Neoplásica/patología , Ritmo Circadiano/fisiología , Cronoterapia de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética
2.
Br J Clin Pharmacol ; 58(6): 618-31, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15563360

RESUMEN

AIMS: Ibandronate, a highly potent nitrogen-containing bisphosphonate, is the subject of an ongoing clinical development programme that aims to maximize the potential of simplified, less frequent oral and intravenous (i.v.) administration in osteoporosis. A modelling and simulation project was undertaken to characterize further the clinical pharmacology of ibandronate and identify convenient intermittent oral and i.v. regimens for clinical evaluation. METHODS AND RESULTS: Using selected data from clinical studies involving 174 women with postmenopausal osteoporosis (PMO), a classical multicompartmental pharmacokinetic-pharmacodynamic (PK-PD) model was developed that accurately described the PK of i.v. ibandronate in plasma and urine and urinary excretion of the C-telopeptide of the alpha chain of type I collagen (uCTX), a sensitive biomarker of PD response to ibandronate. To reduce processing times, the classical PK-PD model was simplified using a "kinetics of drug action" or kinetic (K)-PD model (i.e. a dose-response model as opposed to a dose-concentration-response model). The performance of the K-PD model was evaluated by fitting data simulated with the PK-PD model under various dosing regimens. The simplified model produced a virtually indistinguishable fit of the data from that of the PK-PD model. The K-PD model was extended to consider the influence of supplemental therapy (calcium with or without vitamin D) on the PD response and validated by retrospectively simulating the uCTX response in a prior Phase III and Phase II/III study of i.v. ibandronate, given once every 3 months, in 3380 women with PMO. The observed median uCTX responses at the scheduled assessment points in the completed studies were within the distribution of the simulated responses. The K-PD model for i.v. ibandronate was extended further to allow simultaneous fitting of uCTX responses after i.v. and oral administration in 676 postmenopausal women with osteoporosis, and validated by retrospectively simulating the data observed in a Phase I study of oral daily ibandronate in 180 women with PMO. The K-PD model adequately described the uCTX response after oral dosing. CONCLUSIONS: This validated K-PD model is currently being used to evaluate a range of novel intermittent oral and i.v. ibandronate regimens in an ongoing clinical development programme.


Asunto(s)
Colágeno/orina , Difosfonatos/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Péptidos/orina , Administración Oral , Biomarcadores/análisis , Resorción Ósea/prevención & control , Ensayos Clínicos como Asunto , Colágeno Tipo I , Difosfonatos/farmacocinética , Difosfonatos/farmacología , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Humanos , Ácido Ibandrónico , Infusiones Intravenosas , Modelos Biológicos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA