Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 22(8): 3377-3385, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34251190

RESUMEN

Black widow spider dragline silk is one of nature's high-performance biological polymers, exceeding the strength and toughness of most man-made materials including high tensile steel and Kevlar. Major ampullate (Ma), or dragline silk, is primarily comprised of two spidroin proteins (Sp) stored within the Ma gland. In the native gland environment, the MaSp1 and MaSp2 proteins self-associate to form hierarchical 200-300 nm superstructures despite being intrinsically disordered proteins (IDPs). Here, dynamic light scattering (DLS), three-dimensional (3D) triple resonance solution NMR, and diffusion NMR is utilized to probe the MaSp size, molecular structure, and dynamics of these protein pre-assemblies diluted in 4 M urea and identify specific regions of the proteins important for silk protein pre-assembly. 3D NMR indicates that the Gly-Ala-Ala and Ala-Ala-Gly motifs flanking the poly(Ala) runs, which comprise the ß-sheet forming domains in fibers, are perturbed by urea, suggesting that these regions may be important for silk protein pre-assembly stabilization.


Asunto(s)
Araña Viuda Negra , Fibroínas , Arañas , Secuencia de Aminoácidos , Animales , Humanos , Espectroscopía de Resonancia Magnética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Seda
2.
Proc Natl Acad Sci U S A ; 115(45): 11507-11512, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348773

RESUMEN

Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable-properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains.


Asunto(s)
Araña Viuda Negra/química , Fibroínas/ultraestructura , Nanopartículas/química , Seda/ultraestructura , Animales , Araña Viuda Negra/fisiología , Fibroínas/biosíntesis , Fibroínas/química , Cristales Líquidos/química , Cristales Líquidos/ultraestructura , Micelas , Microdisección , Nanopartículas/ultraestructura , Transición de Fase , Seda/biosíntesis , Seda/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA