Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 13(1): 523, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082293

RESUMEN

Pollen is a unique vehicle for viral spread. Pollen-associated viruses hitchhike on or within pollen grains and are transported to other plants by pollinators. They are deposited on flowers and have a direct pathway into the plant and next generation via seeds. To discover the diversity of pollen-associated viruses and identify contributing landscape and floral features, we perform a species-level metagenomic survey of pollen from wild, visually asymptomatic plants, located in one of four regions in the United States of America varying in land use. We identify many known and novel pollen-associated viruses, half belonging to the Bromoviridae, Partitiviridae, and Secoviridae viral families, but many families are represented. Across the regions, species harbor more viruses when surrounded by less natural and more human-modified environments than the reverse, but we note that other region-level differences may also covary with this. When examining the novel connection between virus richness and floral traits, we find that species with multiple, bilaterally symmetric flowers and smaller, spikier pollen harbored more viruses than those with opposite traits. The association of viral diversity with floral traits highlights the need to incorporate plant-pollinator interactions as a driver of pollen-associated virus transport into the study of plant-viral interactions.


Asunto(s)
Fenotipo , Plantas/virología , Polen/virología , Viroma , Secuencia de Aminoácidos , Animales , Ecología , Flores , Genoma Viral , Filogenia , Polinización , Semillas , Viroma/genética , Virus/clasificación , Virus/genética
2.
Sports Med ; 52(5): 971-993, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34905181

RESUMEN

Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players' recovery for training and competition throughout the season.


Asunto(s)
Baloncesto , Humanos , Masaje , Estaciones del Año , Sueño , Carga de Trabajo
3.
J Sports Sci ; 36(9): 1044-1053, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28703035

RESUMEN

This study examined the influence of body composition on temperature and blood flow responses to post-exercise cold water immersion (CWI), hot water immersion (HWI) and control (CON). Twenty-seven male participants were stratified into three groups: 1) low mass and low fat (LM-LF); 2) high mass and low fat (HM-LF); or 3) high mass and high fat (HM-HF). Experimental trials involved a standardised bout of cycling, maintained until core temperature reached 38.5°C. Participants subsequently completed one of three 15-min recovery interventions (CWI, HWI, or CON). Core, skin and muscle temperatures, and limb blood flow were recorded at baseline, post-exercise, and every 30 min following recovery for 240 min. During CON and HWI there were no differences in core or muscle temperature between body composition groups. The rate of fall in core temperature following CWI was greater in the LM-LF (0.03 ± 0.01°C/min) group compared to the HM-HF (0.01 ± 0.001°C/min) group (P = 0.002). Muscle temperature decreased to a greater extent during CWI in the LM-LF and HM-LF groups (8.6 ± 3.0°C) compared with HM-HF (5.1 ± 2.0°C, P < 0.05). Blood flow responses did not differ between groups. Differences in body composition alter the thermal response to post-exercise CWI, which may explain some of the variance in the responses to CWI recovery.


Asunto(s)
Ciclismo/fisiología , Distribución de la Grasa Corporal , Índice de Masa Corporal , Regulación de la Temperatura Corporal/fisiología , Hidroterapia , Músculo Esquelético/irrigación sanguínea , Flujo Sanguíneo Regional , Adulto , Presión Sanguínea/fisiología , Superficie Corporal , Frío , Estudios Cruzados , Frecuencia Cardíaca/fisiología , Calor , Humanos , Inmersión , Extremidad Inferior/irrigación sanguínea , Extremidad Superior/irrigación sanguínea
4.
Med Sci Sports Exerc ; 46(8): 1631-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24504431

RESUMEN

PURPOSE: Cold water immersion (CWI) may be beneficial for acute recovery from exercise, but it may impair long-term performance by attenuating the stimuli responsible for adaptation to training. We compared effects of CWI and passive rest on cycling performance during a simulated cycling grand tour. METHODS: Thirty-four male endurance-trained competitive cyclists were randomized to CWI for four times per week for 15 min at 15°C or control (passive recovery) groups for 7 d of baseline training, 21 d of intensified training, and an 11-d taper. Criteria for completion of training and testing were satisfied by 10 cyclists in the CWI group (maximal aerobic power, 5.13 ± 0.21 W·kg; mean ± SD) and 11 in the control group (5.01 ± 0.41 W·kg). Each week, cyclists completed a high-intensity interval cycling test and two 4-min bouts separated by 30 min. CWI was performed four times per week for 15 min at 15°C. RESULTS: Between baseline and taper, cyclists in the CWI group had an unclear change in overall 4-min power relative to control (2.7% ± 5.7%), although mean power in the second effort relative to the first was likely higher for the CWI group relative to control (3.0% ± 3.8%). The change in 1-s maximum mean sprint power in the CWI group was likely beneficial compared with control (4.4% ± 4.2%). Differences between groups for the 10-min time trial were unclear (-0.4% ± 4.3%). CONCLUSION: Although some effects of CWI on performance were unclear, data from this study do not support recent speculation that CWI is detrimental to performance after increased training load in competitive cyclists.


Asunto(s)
Adaptación Fisiológica , Rendimiento Atlético/fisiología , Ciclismo/fisiología , Hidroterapia , Educación y Entrenamiento Físico , Adulto , Conducta Competitiva/fisiología , Estudios Transversales , Prueba de Esfuerzo , Humanos , Masculino , Educación y Entrenamiento Físico/métodos , Sueño/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA