Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176904

RESUMEN

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Asunto(s)
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ácido Glutámico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología
2.
J Neuroendocrinol ; 35(9): e13245, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36880566

RESUMEN

A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.


Asunto(s)
Neuronas , Organum Vasculosum , Ratones , Animales , Neuronas/metabolismo , Organum Vasculosum/fisiología , Núcleo Supraquiasmático/fisiología , Hipotálamo/metabolismo , Hipófisis
3.
J Neuroendocrinol ; 34(12): e13217, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36458331

RESUMEN

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.


Asunto(s)
Astrocitos , Hipotálamo , Neuropéptidos , Oxitocina , Síndrome de Prader-Willi , Animales , Femenino , Masculino , Ratones , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Oxitocina/metabolismo , Síndrome de Prader-Willi/metabolismo , Receptores de Oxitocina/metabolismo
4.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198294

RESUMEN

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Asunto(s)
Astrocitos , Hipotálamo , Animales , Astrocitos/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Ratones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
5.
Eur J Neurol ; 28(11): 3640-3649, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34152065

RESUMEN

BACKGROUND AND PURPOSE: Damage to the insula results in cardiovascular complications. In rats, activation of N-methyl-d-aspartate receptors (NMDARs) in the intermediate region of the posterior insular cortex (iIC) results in sympathoexcitation, tachycardia and arterial pressure increases. Similarly, focal experimental hemorrhage at the iIC results in a marked sympathetic-mediated increase in baseline heart rate. The dorsomedial hypothalamic region (DMH) is critical for the integration of sympathetic-mediated tachycardic responses. Here, whether responses evoked from the iIC are dependent on a synaptic relay in the DMH was evaluated. METHODS: Wistar rats were prepared for injections into the iIC and DMH. Anatomical (tracing combined with immunofluorescence) and functional experiments (cardiovascular and sympathetic recordings) were performed. RESULTS: The iIC sends dense projections to the DMH. Approximately 50% of iIC neurons projecting to the DMH express NMDARs, NR1 subunit. Blockade of glutamatergic receptors in the DMH abolishes the cardiovascular and autonomic responses evoked by the activation of NMDARs in the iIC (change in mean arterial pressure 7 ± 1 vs. 1 ± 1 mmHg after DMH blockade; change in heart rate 28 ± 3 vs. 0 ± 3 bpm after DMH blockade; change in renal sympathetic nerve activity 23% ± 1% vs. -1% ± 4% after DMH blockade). Experimental hemorrhage at the iIC resulted in a marked tachycardia (change 89 ± 14 bpm) that was attenuated by 65% ± 5% (p = 0.0009) after glutamatergic blockade at the DMH. CONCLUSIONS: The iIC-induced tachycardia is largely dependent upon a glutamatergic relay in the DMH. Our study reveals the presence of an excitatory glutamatergic pathway from the iIC to the DMH that may be involved in the cardiovascular alterations observed after insular stroke.


Asunto(s)
Núcleo Hipotalámico Dorsomedial , Accidente Cerebrovascular , Animales , Presión Sanguínea , Frecuencia Cardíaca , Humanos , Hipotálamo , Ratas , Ratas Wistar , Transmisión Sináptica , Taquicardia/etiología
6.
J Physiol ; 599(2): 507-520, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31667845

RESUMEN

KEY POINTS: Glutamatergic NMDA receptors (NMDARs) and small conductance Ca2+ -activated K+ (SK) channels are critical synaptic and intrinsic mechanisms, respectively, that regulate the activity of hypothalamic magnocellular neurosecretory neurons (MNNs). In this work, we investigated whether NMDARs and SK channels in MNNs are functionally coupled, and whether an altered coupling may contribute to exacerbated neuronal activity in this condition. We report that NMDARs and SK channels form a functional Ca2+ -dependent negative feedback loop that restrains the excitatory effect on membrane potential and firing activity evoked by NMDAR activation. The negative feedback loop between NMDARs and SK channels was blunted or absent in MNNs of heart failure (HF) rats. These results help us better understand how synaptic and intrinsic mechanisms regulate hypothalamic neuronal activity, as well as how changes in the interaction among these disparate mechanisms contribute to altered neuronal activity during prevalent neurogenic cardiovascular diseases. ABSTRACT: Glutamatergic NMDA receptors (NMDARs) and small conductance Ca2+ -activated K+ (SK) channels are critical synaptic and intrinsic mechanisms, respectively, that regulate the activity of hypothalamic magnocellular neurosecretory neurons (MNNs), both under physiological and pathological states, such as lactation and heart failure (HF). However, whether NMDARs and SK channels in MNNs are functionally coupled, and whether changes in this coupling contribute to exacerbated neuronal activity during HF is at present unknown. In the present study, we addressed these questions using patch-clamp electrophysiology and confocal Ca2+ imaging in a rat model of ischaemic HF. We found that in MNNs of sham rats, blockade of SK channels with apamin (200 nM) significantly increased the magnitude of an NMDAR-evoked current (INMDA ). We also observed that blockade of SK channels potentiated NMDAR-evoked firing, and abolished spike frequency adaptation in MNNs from sham, but not HF rats. Importantly, a larger INMDA -ΔCa2+ response was observed under basal conditions in HF compared to sham rats. Finally, we found that dialysing recorded cells with the Ca2+ chelator BAPTA (10 mM) increased the magnitude of INMDA in MNNs from both sham and HF rats, and occluded the effects of apamin in the former. Together our studies demonstrate that in MNNs, NMDARs and SK channels are functionally coupled, forming a local negative feedback loop that restrains the excitatory effect evoked by NMDAR activation. Moreover, our studies also support a blunted NMDAR-SK channel coupling in MNNs of HF rats, establishing it as a pathophysiological mechanism contributing to exacerbated hypothalamic neuronal activity during this prevalent neurogenic cardiovascular disease.


Asunto(s)
Insuficiencia Cardíaca , Receptores de N-Metil-D-Aspartato , Animales , Apamina , Femenino , Hipotálamo/metabolismo , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
7.
Am J Physiol Heart Circ Physiol ; 317(3): H496-H504, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274353

RESUMEN

Accumulating evidence supports that the brain renin-angiotensin system (RAS), including prorenin (PR) and its receptor (PRR), two newly discovered RAS players, contribute to sympathoexcitation in salt-sensitive hypertension. Still, whether PR also contributed to elevated circulating levels of neurohormones such as vasopressin (VP) during salt-sensitive hypertension, and if so, what are the precise underlying mechanisms, remains to be determined. To address these questions, we obtained patch-clamp recordings from hypothalamic magnocellular neurosecretory neurons (MNNs) that synthesize the neurohormones oxytocin and VP in acute hypothalamic slices obtained from sham and deoxycorticosterone acetate (DOCA)-salt-treated hypertensive rats. We found that focal application of PR markedly increased membrane excitability and firing responses in MNNs of DOCA-salt, compared with sham rats. This effect included a shorter latency to spike initiation and increased numbers of spikes in response to depolarizing stimuli and was mediated by a more robust inhibition of A-type K+ channels in DOCA-salt compared with sham rats. On the other hand, the afterhyperpolarizing potential mediated by the activation of Ca2+-dependent K+ channel was not affected by PR. mRNA expression of PRR, VP, and the Kv4.3 K+ channel subunit in the supraoptic nucleus of DOCA-salt hypertensive rats was increased compared with sham rats. Finally, we report a significant decrease of plasma VP levels in neuron-selective PRR knockdown mice treated with DOCA-salt, compared with wild-type DOCA-salt-treated mice. Together, these results support that activation of PRR contributes to increased excitability and firing discharge of MNNs and increased plasma levels of VP in DOCA-salt hypertension.NEW & NOTEWORTHY Our studies support that prorenin (PR) and its receptor (PRR) within the hypothalamus contribute to elevated plasma vasopressin levels in deoxycorticosterone acetate-salt hypertension, in part because of an exacerbated effect of PR on magnocellular neurosecretory neuron excitability; Moreover, our study implicates A-type K+ channels as key underlying molecular targets mediating these effects. Thus, PR/PRR stands as a novel therapeutic target for the treatment of neurohumoral activation in salt-sensitive hypertension.


Asunto(s)
Presión Sanguínea , Hipertensión/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Sistema Renina-Angiotensina , Renina/metabolismo , Vasopresinas/sangre , Animales , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Hipertensión/sangre , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipotálamo/fisiopatología , Masculino , Potenciales de la Membrana , Ratones Noqueados , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Ratas Wistar , Tiempo de Reacción , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/metabolismo , Cloruro de Sodio Dietético , Factores de Tiempo , Regulación hacia Arriba
8.
J Physiol ; 597(6): 1735-1756, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30629746

RESUMEN

KEY POINTS: Using 'sniffer' cell biosensors, we evaluated the effects of specific firing patterns and frequencies on activity-dependent somatodendritic release of vasopressin from paraventricular nucleus neurones. Somatodendritic release of vasopressin was rarely observed during continuous firing but was strengthened by clustered activity. Moreover, release evoked at any given frequency was robustly potentiated by NMDA receptor (NMDAR)-mediated firing. Differently from axonal release, NMDAR activation was necessary for somatodendritic release to occur at physiological firing frequencies, acting thus as a gating mechanism by which activity-dependent release from these two neuronal compartments could be independently regulated. The NMDAR-mediated potentiation was independent of a specific firing pattern and was not accompanied by increased spike broadening, but correlated with higher dendritic Ca2+ levels. Our studies provide fundamental novel information regarding stimulus-secretion coupling at somatodendritic compartments, and shed light into mechanisms by which activity-dependent release of neuronal signals from axonal terminals and dendrites could be regulated in a spatially compartmentalized manner. ABSTRACT: Dendrites are now recognized to be active transmitting neuronal compartments subserving complex brain functions, including motor behaviours and homeostatic neurohumoral responses. Still, the precise mechanisms underlying activity-dependent release of dendritic signals, and how dendritic release is regulated independently from axonal release, remains largely unknown. We used 'sniffer' biosensor cells to enable the measurement and study of activity-dependent dendritic release of vasopressin (VP) from hypothalamic neurones in brain slices. SnifferVP responses were dose-dependent, with a threshold detection level of 0.5 nM for VP, being thus a highly sensitive tool to detect endogenous physiological levels of the neuropeptide. Somatodendritic release of VP was rarely observed in response to a burst of action potentials fired in continuous mode, but was strengthened by clustered firing activity. Moreover, release evoked at any given frequency was robustly potentiated when firing was triggered by NMDA receptor (NMDAR) activation. Differently from axonal release, NMDAR activation was necessary for dendritic release to occur at physiological firing frequencies. Thus, we propose that NMDARs may act as a gating mechanism by which activity-dependent release from these two neuronal compartments can be independently regulated. The NMDAR-mediated potentiation of dendritic release was independent of a particular action potential waveform, firing pattern evoked, or a more pronounced spiked broadening, but correlated with higher dendritic Ca2+ levels. Overall, our studies provide fundamental novel information regarding stimulus-secretion coupling at neuronal dendrites, and shed light into mechanisms by which activity-dependent release of neuronal signals from axonal terminals and dendrites can be regulated in a spatially compartmentalized manner.


Asunto(s)
Dendritas/metabolismo , Exocitosis , Hipotálamo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vasopresinas/metabolismo , Potenciales de Acción , Animales , Calcio/metabolismo , Dendritas/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Masculino , Plasticidad Neuronal , Ratas , Ratas Wistar , Transmisión Sináptica
9.
J Physiol ; 595(20): 6429-6442, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28714070

RESUMEN

KEY POINTS: Small conductance Ca2+ -activated K+ (SK) channels play an important role in regulating the excitability of magnocellular neurosecretory cells (MNCs). Although an increased SK channel function contributes to adaptive physiological responses, it remains unknown whether changes in SK channel function/expression contribute to exacerbated MNC activity under disease conditions. We show that the input-output function of MNCs in heart failure (HF) rats is enhanced. Moreover, the SK channel blocker apamin enhanced the input-output function in sham, although not in HF rats. We found that both the after-hyperpolarizing potential magnitude and the underlying apamin-sensitive IAHP are blunted in MNCs from HF rats. The magnitude of spike-induced increases in intracellular Ca2+ levels was not affected in MNCs of HF rats. We found a diminished expression of SK2/SK3 channel subunit mRNA expression in the supraoptic nucleus of HF rats. Our studies suggest that a reduction in SK channel expression, but not changes in Ca2+ -mediated activation of SK channels, contributes to exacerbated MNC activity in HF rats. ABSTRACT: Small conductance Ca2+ -activated K+ channels (SK) play an important role in regulating the activity of magnocellular neurosecretory cells (MNCs) and hormone release from the posterior pituitary. Moreover, enhanced SK activity contributes to the adaptive responses of MNCs to physiological challenge, such as lactation. Nevertheless, whether changes in SK function/expression contribute to exacerbated MNC activity during diseases such as heart failure (HF) remains unknown. In the present study, we used a combination of patch clamp electrophysiology, confocal Ca2+ imaging and molecular biology in a rat model of ischaemic HF. We found that the input-output function of MNCs was enhanced in HF compared to sham rats. Moreover, although the SK blocker apamin (200 nm) strengthened the input-output function in sham rats, it failed to have an effect in HF rats. The magnitude of the after-hyperpolarizing potential (AHP) following a train of spikes and the underlying apamin-sensitive IAHP were blunted in MNCs from HF rats. However, spike-induced increases in intracellular Ca2+ were not affected in the MNCs of HF rats. Real-time PCR measurements of SK channel subunits mRNA in supraoptic nucleus punches revealed a diminished expression of SK2/SK3 subunits in HF compared to sham rats. Together, our studies demonstrate that MNCs from HF rats exhibit increased membrane excitability and an enhanced input-output function, and also that a reduction in SK channel-mediated, apamin-sensitive AHP is a critical contributing mechanism. Moreover, our results suggest that the reduced AHP is related to a down-regulation of SK2/SK3 channel subunit expression but not the result of a blunted activity-dependent intracellular Ca2+ increase following a burst of action potentials.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Hipotálamo/fisiología , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Animales , Masculino , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
10.
Am J Physiol Heart Circ Physiol ; 313(3): H548-H557, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626074

RESUMEN

Recent studies have supported an important contribution of prorenin (PR) and its receptor (PRR) to the regulation of hypothalamic, sympathetic, and neurosecretory outflows to the cardiovascular system, including systemic release of vasopressin (VP), both under physiological and cardiovascular disease conditions. Still, the identification of precise cellular mechanisms and neuronal/molecular targets remain unknown. We have recently shown that PRR is expressed in VP neurons and that their activation increases neuronal activity. However, the underlying ionic channel mechanisms are undefined. Here, we performed patch-clamp electrophysiology from identified VP neurons in acute hypothalamic slices obtained from enhanced green fluorescent protein-VP transgenic rats. Voltage-clamp recordings showed that PR inhibited the magnitude of A-type K+ current (IA; ~50% at -25 mV), a subthreshold voltage-dependent current that restrains VP firing activity. PR also increased the inactivation rate of IA and shifted the steady-state voltage-dependent inactivation function toward more hyperpolarized membrane potential (~7 mV shift), thus resulting in less channel availability to be activated at any given membrane potential. PR also inhibited a sustained component of IA ("window" current). PR-mediated changes in action potential waveform and increased firing activity were occluded when IA was blocked by 4-aminopyridine. Finally, PR failed to increase superoxide production within the supraoptic nucleus/paraventricular nucleus, and PR excitatory effects persisted in slices treated with the SOD mimetic tempol. Taken together, these experiments indicated that PR excitatory effects on vasopressin neurons involve inhibition of IA, due, in part, to increases in its voltage-dependent inactivation properties. Moreover, our results indicate that PR effects did not involve an increase in oxidative stress.NEW & NOTEWORTHY Here, we demonstrate that prorenin/the prorenin receptor is an important signaling unit for the regulation of vasopressin firing activity and, thus, systemic hormonal release. We identified A-type K+ channels as key molecular targets mediating prorenin stimulation of vasopressin neuronal activity, thus standing as a potential therapeutic target for neurohumoral activation in cardiovascular disease.


Asunto(s)
Precursores Enzimáticos/farmacología , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Renina/farmacología , Vasopresinas/metabolismo , Potenciales de Acción , Animales , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Masculino , Neuronas/metabolismo , Neurosecreción , Técnicas de Placa-Clamp , Fenotipo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas Transgénicas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Vasopresinas/genética
11.
J Neurosci ; 35(21): 8245-57, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26019339

RESUMEN

Basal and activity-dependent cerebral blood flow changes are coordinated by the action of critical processes, including cerebral autoregulation, endothelial-mediated signaling, and neurovascular coupling. The goal of our study was to determine whether astrocytes contribute to the regulation of parenchymal arteriole (PA) tone in response to hemodynamic stimuli (pressure/flow). Cortical PA vascular responses and astrocytic Ca(2+) dynamics were measured using an in vitro rat/mouse brain slice model of perfused/pressurized PAs; studies were supplemented with in vivo astrocytic Ca(2+) imaging. In vitro, astrocytes responded to PA flow/pressure increases with an increase in intracellular Ca(2+). Astrocytic Ca(2+) responses were corroborated in vivo, where acute systemic phenylephrine-induced increases in blood pressure evoked a significant increase in astrocytic Ca(2+). In vitro, flow/pressure-evoked vasoconstriction was blunted when the astrocytic syncytium was loaded with BAPTA (chelating intracellular Ca(2+)) and enhanced when high Ca(2+) or ATP were introduced to the astrocytic syncytium. Bath application of either the TRPV4 channel blocker HC067047 or purinergic receptor antagonist suramin blunted flow/pressure-evoked vasoconstriction, whereas K(+) and 20-HETE signaling blockade showed no effect. Importantly, we found TRPV4 channel expression to be restricted to astrocytes and not the endothelium of PA. We present evidence for a novel role of astrocytes in PA flow/pressure-evoked vasoconstriction. Our data suggest that astrocytic TRPV4 channels are key molecular sensors of hemodynamic stimuli and that a purinergic, glial-derived signal contributes to flow/pressure-induced adjustments in PA tone. Together our results support bidirectional signaling within the neurovascular unit and astrocytes as key modulators of PA tone.


Asunto(s)
Arteriolas/fisiología , Astrocitos/fisiología , Circulación Cerebrovascular/fisiología , Canales Catiónicos TRPV/biosíntesis , Vasoconstricción/fisiología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
12.
J Physiol ; 592(13): 2813-27, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24835172

RESUMEN

Neuronal activity is controlled by a fine-tuned balance between intrinsic properties and extrinsic synaptic inputs. Moreover, neighbouring astrocytes are now recognized to influence a wide spectrum of neuronal functions. Yet, how these three key factors act in concert to modulate and fine-tune neuronal output is not well understood. Here, we show that in rat hypothalamic magnocellular neurosecretory cells (MNCs), glutamate NMDA receptors (NMDARs) are negatively coupled to the transient, voltage-gated A-type K(+) current (IA). We found that activation of NMDARs by extracellular glutamate levels influenced by astrocyte glutamate transporters resulted in a significant inhibition of IA. The NMDAR-IA functional coupling resulted from activation of extrasynaptic NMDARs, was calcium- and protein kinase C-dependent, and involved enhanced steady-state, voltage-dependent inactivation of IA. The NMDAR-IA coupling diminished the latency to the first evoked spike in response to membrane depolarization and increased the total number of evoked action potentials, thus strengthening the neuronal input/output function. Finally, we found a blunted NMDA-mediated inhibition of IA in dehydrated rats. Together, our findings support a novel signalling mechanism that involves a functional coupling between extrasynaptic NMDARs and A-type K(+) channels, which is influenced by local astrocytes. We show this signalling complex to play an important role in modulating hypothalamic neuronal excitability, which may contribute to adaptive responses during a sustained osmotic challenge such as dehydration.


Asunto(s)
Astrocitos/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Sistemas Neurosecretores/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Potenciales de Acción , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Calcio/metabolismo , Ácido Glutámico/farmacología , Hipotálamo/citología , Hipotálamo/fisiología , Masculino , Neuronas/fisiología , Sistemas Neurosecretores/citología , Sistemas Neurosecretores/fisiología , Presión Osmótica , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Tiempo de Reacción , Sinapsis/fisiología
13.
Hypertension ; 63(3): 572-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24343120

RESUMEN

Angiotensin II-mediated vascular brain inflammation emerged as a novel pathophysiological mechanism in neurogenic hypertension. However, the precise underlying mechanisms and functional consequences in relation to blood-brain barrier (BBB) integrity and central angiotensin II actions mediating neurohumoral activation in hypertension are poorly understood. Here, we aimed to determine whether BBB permeability within critical hypothalamic and brain stem regions involved in neurohumoral regulation was altered during hypertension. Using digital imaging quantification after intravascularly injected fluorescent dyes and immunohistochemistry, we found increased BBB permeability, along with altered key BBB protein constituents, in spontaneously hypertensive rats within the hypothalamic paraventricular nucleus, the nucleus of the solitary tract, and the rostral ventrolateral medulla, all critical brain regions known to contribute to neurohumoral activation during hypertension. BBB disruption, including increased permeability and downregulation of constituent proteins, was prevented in spontaneously hypertensive rats treated with the AT1 receptor antagonist losartan, but not with hydralazine, a direct vasodilator. Importantly, we found circulating angiotensin II to extravasate into these brain regions, colocalizing with neurons and microglial cells. Taken together, our studies reveal a novel angiotensin II-mediated feed-forward mechanism during hypertension, by which circulating angiotensin II evokes increased BBB permeability, facilitating in turn its access to critical brain regions known to participate in blood pressure regulation.


Asunto(s)
Angiotensina II/sangre , Presión Sanguínea , Barrera Hematoencefálica/fisiopatología , Tronco Encefálico/metabolismo , Hipertensión/metabolismo , Hipotálamo/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Tronco Encefálico/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Hipotálamo/fisiopatología , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Wistar
14.
Neuron ; 78(6): 1036-49, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23791197

RESUMEN

Although communication between neurons is considered a function of the synapse, neurons also release neurotransmitter from their dendrites. We found that dendritic transmitter release coordinates activity across distinct neuronal populations to generate integrative homeostatic responses. We show that activity-dependent vasopressin release from hypothalamic neuroendocrine neurons in the paraventricular nucleus stimulates neighboring (~100 µm soma-to-soma) presympathetic neurons, resulting in a sympathoexcitatory population response. This interpopulation crosstalk was engaged by an NMDA-mediated increase in dendritic Ca(2+), influenced by vasopressin's ability to diffuse in the extracellular space, and involved activation of CAN channels at the target neurons. Furthermore, we demonstrate that this interpopulation crosstalk plays a pivotal role in the generation of a systemic, polymodal neurohumoral response to a hyperosmotic challenge. Because dendritic release is emerging as a widespread process, our results suggest that a similar mechanism could mediate interpopulation crosstalk in other brain systems, particularly those involved in generating complex behaviors.


Asunto(s)
Dendritas/metabolismo , Hipotálamo/metabolismo , Red Nerviosa/metabolismo , Neuropéptidos/metabolismo , Neurosecreción/fisiología , Animales , Dendritas/química , Hipotálamo/química , Masculino , Red Nerviosa/química , Técnicas de Cultivo de Órganos , Ratas , Ratas Transgénicas , Ratas Wistar
15.
Am J Physiol Regul Integr Comp Physiol ; 305(4): R414-22, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23785079

RESUMEN

An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²âº imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²âº levels (NMDA-ΔCa²âº) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²âº in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²âº was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²âº in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²âº homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²âº signaling during HF are discussed.


Asunto(s)
Señalización del Calcio , Insuficiencia Cardíaca/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciales de Acción , Animales , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/farmacología , Retroalimentación Fisiológica , Insuficiencia Cardíaca/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiopatología , Masculino , Microscopía Confocal , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Factores de Tiempo
16.
J Neurosci ; 33(2): 631-40, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303942

RESUMEN

A dynamic balance between the excitatory and inhibitory neurotransmitters glutamate and GABA is critical for maintaining proper neuronal activity in the brain. This balance is partly achieved via presynaptic interactions between glutamatergic and GABA(A)ergic synapses converging into the same targets. Here, we show that in hypothalamic magnocellular neurosecretory neurons (MNCs), a direct crosstalk between postsynaptic NMDA receptors (NMDARs) and GABA(A) receptors (GABA(A)Rs) contributes to the excitatory/inhibitory balance in this system. We found that activation of NMDARs by endogenous glutamate levels controlled by astrocyte glutamate transporters, evokes a transient and reversible potentiation of postsynaptic GABA(A)Rs. This inter-receptor crosstalk is calcium-dependent and involves a kinase-dependent phosphorylation mechanism, but does not require nitric oxide as an intermediary signal. Finally, we found the NMDAR-GABA(A)R crosstalk to be blunted in rats with heart failure, a pathological condition in which the hypothalamic glutamate-GABA balance is tipped toward an excitatory predominance. Together, our findings support a novel form of glutamate-GABA interactions in MNCs, which involves crosstalk between NMDA and GABA(A) postsynaptic receptors, whose strength is controlled by the activity of local astrocytes. We propose this inter-receptor crosstalk to act as a compensatory, counterbalancing mechanism to dampen glutamate-mediated overexcitation. Finally, we propose that an uncoupling between NMDARs and GABA(A)Rs may contribute to exacerbated neuronal activity and, consequently, sympathohumoral activation in such disease conditions as heart failure.


Asunto(s)
Astrocitos/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Sistemas Neurosecretores/fisiología , Receptor Cross-Talk/fisiología , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Astrocitos/efectos de los fármacos , Señalización del Calcio/fisiología , Fenómenos Electrofisiológicos , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/fisiología , Agonistas del GABA/farmacología , Glutamatos/fisiología , Insuficiencia Cardíaca/fisiopatología , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Masculino , Muscimol/farmacología , Neuronas/efectos de los fármacos , Sistemas Neurosecretores/citología , Sistemas Neurosecretores/efectos de los fármacos , Óxido Nítrico/fisiología , Técnicas de Placa-Clamp , Proteínas Quinasas/fisiología , Ratas , Ratas Wistar , Receptor Cross-Talk/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Sinapsis/fisiología
17.
Eur J Neurosci ; 21(2): 501-12, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15673449

RESUMEN

To determine whether intrinsic mechanisms drive supraoptic nucleus oxytocin neuron excitation during morphine withdrawal, we calculated the probability of action potential (spike) firing with time after each spike for oxytocin neurons in morphine-naive and morphine-dependent rats in vivo and measured changes in intrinsic membrane properties in vitro. The opioid receptor antagonist, naloxone, increased oxytocin neuron post-spike excitability in morphine-dependent rats; this increase was greater for short interspike intervals (<0.1 s). Naloxone had similar, but smaller (P=0.04), effects in oxytocin neurons in morphine-naive rats. The increased post-spike excitability for short interspike intervals was specific to naloxone, because osmotic stimulation increased excitability without potentiating excitability at short interspike intervals. By contrast to oxytocin neurons, neither morphine dependence nor morphine withdrawal increased post-spike excitability in neighbouring vasopressin neurons. To determine whether increased post-spike excitability in oxytocin neurons during morphine withdrawal reflected altered intrinsic membrane properties, we measured the in vitro effects of naloxone on transient outward rectification (TOR) and after-hyperpolarization (AHP), properties mediated by K+ channels and that affect supraoptic nucleus neuron post-spike excitability. Naloxone reduced the TOR and AHP (by 20% and 60%, respectively) in supraoptic nucleus neurons from morphine-dependent, but not morphine-naive, rats. In vivo, spike frequency adaptation (caused by activity-dependent AHP activation) was reduced by naloxone (from 27% to 3%) in vasopressin neurons in morphine-dependent, but not morphine-naive, rats. Thus, multiple K+ channel inhibition increases post-spike excitability for short interspike intervals, contributing to the increased firing of oxytocin neurons during morphine withdrawal.


Asunto(s)
Dependencia de Morfina/patología , Morfina/farmacología , Narcóticos/farmacología , Neuronas/efectos de los fármacos , Oxitocina/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Interacciones Farmacológicas , Femenino , Hipotálamo/citología , Técnicas In Vitro , Morfina/efectos adversos , Naloxona/farmacología , Naftalenos , Antagonistas de Narcóticos/farmacología , Narcóticos/efectos adversos , Neuronas/fisiología , Oxepinas , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Solución Salina Hipertónica/farmacología , Factores de Tiempo
18.
Prog Biophys Mol Biol ; 84(2-3): 197-215, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14769436

RESUMEN

Accumulated evidence indicates that nitric oxide (NO) plays a pivotal role in the central control of bodily homeostasis, including cardiovascular and fluid balance regulation. Two major neuronal substrates mediating NO actions in the control of homeostasis are the paraventricular nucleus (PVN) of the hypothalamus, considered a key center for the integration of neuroendocrine and autonomic functions, and the supraoptic nucleus (SON). In this work, a comprehensive review of NO modulatory actions within the SON/PVN, including NO actions on neuroendocrine and autonomic outputs, as well as the cellular mechanisms underlying these effects is provided. Furthermore, this review comprises recent progress from our laboratory that adds to our current understanding of the cellular sources, targets and mechanisms underlying NO actions within neuroendocrine and autonomic hypothalamic neuronal circuits. By combining in vitro patch clamp recordings, tract-tracing neuroanatomy, immunohistochemistry and live imaging techniques, we started to shed light into the cellular sources and signals driving NO production within the SON and PVN, as well as NO actions and mechanisms targeting discrete neuronal populations within these circuits. Based on this new information, we have expanded one of the current working models in the field, highlighting a key role for NO as a signaling molecule that facilitates crosstalk among various cell types and systems. We propose that this dynamic NO signaling mechanisms may constitute a neuroanatomical and functional substrate underlying the ability of the SON and PVN to coordinate complex neuroendocrine and autonomic output patterns.


Asunto(s)
Sistemas Neurosecretores/fisiología , Óxido Nítrico/metabolismo , Transducción de Señal , Animales , Encéfalo/patología , Electrofisiología , Humanos , Hipotálamo/metabolismo , Inmunohistoquímica , Microscopía Confocal , Modelos Anatómicos , Modelos Biológicos , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Técnicas de Placa-Clamp , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA