Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 15(1): 1859, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424099

RESUMEN

Studies suggest that inducing gut microbiota changes may alter both muscle physiology and cognitive behaviour. Gut microbiota may play a role in both anabolic resistance of older muscle, and cognition. In this placebo controlled double blinded randomised controlled trial of 36 twin pairs (72 individuals), aged ≥60, each twin pair are block randomised to receive either placebo or prebiotic daily for 12 weeks. Resistance exercise and branched chain amino acid (BCAA) supplementation is prescribed to all participants. Outcomes are physical function and cognition. The trial is carried out remotely using video visits, online questionnaires and cognitive testing, and posting of equipment and biological samples. The prebiotic supplement is well tolerated and results in a changed gut microbiome [e.g., increased relative Bifidobacterium abundance]. There is no significant difference between prebiotic and placebo for the primary outcome of chair rise time (ß = 0.579; 95% CI -1.080-2.239 p = 0.494). The prebiotic improves cognition (factor score versus placebo (ß = -0.482; 95% CI,-0.813, -0.141; p = 0.014)). Our results demonstrate that cheap and readily available gut microbiome interventions may improve cognition in our ageing population. We illustrate the feasibility of remotely delivered trials for older people, which could reduce under-representation of older people in clinical trials. ClinicalTrials.gov registration: NCT04309292.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Musculares , Anciano , Humanos , Envejecimiento , Cognición , Suplementos Dietéticos , Método Doble Ciego , Microbioma Gastrointestinal/fisiología , Músculos , Persona de Mediana Edad
2.
Lancet Child Adolesc Health ; 5(10): 708-718, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358472

RESUMEN

BACKGROUND: In children, SARS-CoV-2 infection is usually asymptomatic or causes a mild illness of short duration. Persistent illness has been reported; however, its prevalence and characteristics are unclear. We aimed to determine illness duration and characteristics in symptomatic UK school-aged children tested for SARS-CoV-2 using data from the COVID Symptom Study, one of the largest UK citizen participatory epidemiological studies to date. METHODS: In this prospective cohort study, data from UK school-aged children (age 5-17 years) were reported by an adult proxy. Participants were voluntary, and used a mobile application (app) launched jointly by Zoe Limited and King's College London. Illness duration and symptom prevalence, duration, and burden were analysed for children testing positive for SARS-CoV-2 for whom illness duration could be determined, and were assessed overall and for younger (age 5-11 years) and older (age 12-17 years) groups. Children with longer than 1 week between symptomatic reports on the app were excluded from analysis. Data from symptomatic children testing negative for SARS-CoV-2, matched 1:1 for age, gender, and week of testing, were also assessed. FINDINGS: 258 790 children aged 5-17 years were reported by an adult proxy between March 24, 2020, and Feb 22, 2021, of whom 75 529 had valid test results for SARS-CoV-2. 1734 children (588 younger and 1146 older children) had a positive SARS-CoV-2 test result and calculable illness duration within the study timeframe (illness onset between Sept 1, 2020, and Jan 24, 2021). The most common symptoms were headache (1079 [62·2%] of 1734 children), and fatigue (954 [55·0%] of 1734 children). Median illness duration was 6 days (IQR 3-11) versus 3 days (2-7) in children testing negative, and was positively associated with age (Spearman's rank-order rs 0·19, p<0·0001). Median illness duration was longer for older children (7 days, IQR 3-12) than younger children (5 days, 2-9). 77 (4·4%) of 1734 children had illness duration of at least 28 days, more commonly in older than younger children (59 [5·1%] of 1146 older children vs 18 [3·1%] of 588 younger children; p=0·046). The commonest symptoms experienced by these children during the first 4 weeks of illness were fatigue (65 [84·4%] of 77), headache (60 [77·9%] of 77), and anosmia (60 [77·9%] of 77); however, after day 28 the symptom burden was low (median 2 symptoms, IQR 1-4) compared with the first week of illness (median 6 symptoms, 4-8). Only 25 (1·8%) of 1379 children experienced symptoms for at least 56 days. Few children (15 children, 0·9%) in the negatively tested cohort had symptoms for at least 28 days; however, these children experienced greater symptom burden throughout their illness (9 symptoms, IQR 7·7-11·0 vs 8, 6-9) and after day 28 (5 symptoms, IQR 1·5-6·5 vs 2, 1-4) than did children who tested positive for SARS-CoV-2. INTERPRETATION: Although COVID-19 in children is usually of short duration with low symptom burden, some children with COVID-19 experience prolonged illness duration. Reassuringly, symptom burden in these children did not increase with time, and most recovered by day 56. Some children who tested negative for SARS-CoV-2 also had persistent and burdensome illness. A holistic approach for all children with persistent illness during the pandemic is appropriate. FUNDING: Zoe Limited, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, and Alzheimer's Society.


Asunto(s)
COVID-19/epidemiología , COVID-19/patología , SARS-CoV-2/aislamiento & purificación , Adolescente , COVID-19/diagnóstico , COVID-19/virología , Prueba de COVID-19 , Niño , Preescolar , Ciencia Ciudadana , Estudios de Cohortes , Costo de Enfermedad , Femenino , Humanos , Masculino , Estudios Prospectivos , SARS-CoV-2/patogenicidad , Reino Unido
3.
Nutrients ; 13(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34371858

RESUMEN

Frailty is a syndrome of growing importance given the global ageing population. While frailty is a multifactorial process, poor nutritional status is considered a key contributor to its pathophysiology. As nutrition is a modifiable risk factor for frailty, strategies to prevent and treat frailty should consider dietary change. Observational evidence linking nutrition with frailty appears most robust for dietary quality: for example, dietary patterns such as the Mediterranean diet appear to be protective. In addition, research on specific foods, such as a higher consumption of fruit and vegetables and lower consumption of ultra-processed foods are consistent, with healthier profiles linked to lower frailty risk. Few dietary intervention studies have been conducted to date, although a growing number of trials that combine supplementation with exercise training suggest a multi-domain approach may be more effective. This review is based on an interdisciplinary workshop, held in November 2020, and synthesises current understanding of dietary influences on frailty, focusing on opportunities for prevention and treatment. Longer term prospective studies and well-designed trials are needed to determine the causal effects of nutrition on frailty risk and progression and how dietary change can be used to prevent and/or treat frailty in the future.


Asunto(s)
Dieta Saludable/métodos , Dieta/efectos adversos , Fragilidad/prevención & control , Desnutrición/dietoterapia , Estado Nutricional , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Causalidad , Conducta Alimentaria/fisiología , Femenino , Anciano Frágil , Fragilidad/etiología , Humanos , Masculino , Desnutrición/complicaciones , Desnutrición/fisiopatología
4.
BMJ Nutr Prev Health ; 4(1): 149-157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34308122

RESUMEN

OBJECTIVES: Dietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection. DESIGN: App-based community survey. SETTING: 445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373). MAIN EXPOSURE: Self-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020. MAIN OUTCOME MEASURES: SARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020. RESULTS: In 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts. CONCLUSION: In women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made.

5.
Age Ageing ; 47(1): 119-125, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985290

RESUMEN

Introduction: frailty is an increased vulnerability to adverse health outcomes, across multiple physiological systems, with both environmental and genetic drivers. The two most commonly used measures are Rockwood's frailty index (FI) and Fried's frailty phenotype (FP). Material and methods: the present study included 3626 individuals from the TwinsUK Adult Twin Registry. We used the classical twin model to determine whether FI and FP share the same latent aetiological factors. We also investigated the relationship between frailty and chronic widespread musculoskeletal pain (CWP), another holistic age-related condition with significant clinical impact. Results: FP and FI shared underlying genetic and environmental aetiology. CWP was associated with both frailty measures, and health deficits appeared to mediate the relationship between phenotypic frailty and pain. Latent genetic factors underpinning CWP were shared with frailty. While frailty was increased in the twins reporting pain, co-twin regression analysis indicated that the relationship between CWP and frailty is reduced after accounting for shared genetic and environmental factors. Conclusions: both measures of frailty tap the same root causes, thus this work helps unify frailty research. We confirmed a strong association between CWP and frailty, and showed a large and significant shared genetic aetiology of both phenomena. Our findings argue against pain being a significant causative factor in the development of frailty, favouring common causation. This study highlights the need to manage CWP in frail individuals and undertake a Comprehensive Geriatric Assessment in individuals presenting with CWP. Finally, the search for genetic factors underpinning CWP and frailty could be aided by integrating measures of pain and frailty.


Asunto(s)
Dolor Crónico/genética , Fragilidad/genética , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Dolor Crónico/diagnóstico , Femenino , Anciano Frágil , Fragilidad/diagnóstico , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Evaluación Geriátrica/métodos , Herencia , Humanos , Persona de Mediana Edad , Dimensión del Dolor , Fenotipo , Sistema de Registros , Factores de Riesgo , Reino Unido , Adulto Joven
6.
Sci Rep ; 7(1): 11079, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894110

RESUMEN

Omega-3 fatty acids may influence human physiological parameters in part by affecting the gut microbiome. The aim of this study was to investigate the links between omega-3 fatty acids, gut microbiome diversity and composition and faecal metabolomic profiles in middle aged and elderly women. We analysed data from 876 twins with 16S microbiome data and DHA, total omega-3, and other circulating fatty acids. Estimated food intake of omega-3 fatty acids were obtained from food frequency questionnaires. Both total omega-3and DHA serum levels were significantly correlated with microbiome alpha diversity (Shannon index) after adjusting for confounders (DHA Beta(SE) = 0.13(0.04), P = 0.0006 total omega-3: 0.13(0.04), P = 0.001). These associations remained significant after adjusting for dietary fibre intake. We found even stronger associations between DHA and 38 operational taxonomic units (OTUs), the strongest ones being with OTUs from the Lachnospiraceae family (Beta(SE) = 0.13(0.03), P = 8 × 10-7). Some of the associations with gut bacterial OTUs appear to be mediated by the abundance of the faecal metabolite N-carbamylglutamate. Our data indicate a link between omega-3 circulating levels/intake and microbiome composition independent of dietary fibre intake, particularly with bacteria of the Lachnospiraceae family. These data suggest the potential use of omega-3 supplementation to improve the microbiome composition.


Asunto(s)
Biodiversidad , Ácidos Grasos Omega-3/metabolismo , Microbioma Gastrointestinal , Glutamatos/biosíntesis , Anciano , Anciano de 80 o más Años , Biomarcadores , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Omega-6/metabolismo , Heces/microbiología , Femenino , Humanos , Metaboloma , Metabolómica/métodos , Persona de Mediana Edad
7.
J Bone Miner Res ; 31(2): 317-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26288012

RESUMEN

Age-related loss of skeletal muscle mass and strength are risk factors for sarcopenia, osteoporosis, falls, fractures, frailty, and mortality. Dietary magnesium (Mg) could play a role in prevention of age-related loss of skeletal muscle mass, power, and strength directly through physiological mechanisms or indirectly through an impact on chronic low-grade inflammation, itself a risk factor for loss of skeletal muscle mass and strength. In a cross-sectional study of 2570 women aged 18 to 79 years, we examined associations between intakes of Mg, estimated using a food-frequency questionnaire (FFQ), dual-energy X-ray absorptiometry (DXA)-derived measures of muscle mass (fat-free mass as a percentage of body weight [FFM%], fat-free mass index [FFMI, kg/m(2)]), leg explosive power (LEP), and grip strength (n = 949 only). We also examined associations between circulating hs-CRP (C-reactive protein) and muscle mass and LEP, and explored the potential attenuation of these relationships by Mg. We compared our findings with those of age and protein intake. Endpoints were calculated by quintile of Mg and adjusted for relevant confounders. Significant positive associations were found between a higher Mg and indices of skeletal muscle mass and LEP, and also with hs-CRP, after adjustment for covariates. Contrasting extreme quintiles of Mg intake showed differences of 2.6% for FFM% (p trend < 0.001), 0.4 kg/m(2) for FFMI (p trend = 0.005), and 19.6 watts/kg for LEP (p trend < 0.001). Compared with protein, these positive associations were 7 times greater for FFM% and 2.5 times greater for LEP. We also found that higher hs-CRP was negatively associated with skeletal muscle mass and, in statistical modeling, that a higher dietary Mg attenuated this negative relationship by 6.5%, with greater attenuation in women older than 50 years. No association was found between Mg and grip strength. Our results suggest that dietary magnesium may aid conservation of age-related loss of skeletal muscle mass and power in women of all ages.


Asunto(s)
Envejecimiento/fisiología , Proteína C-Reactiva/metabolismo , Suplementos Dietéticos , Fuerza de la Mano/fisiología , Magnesio/administración & dosificación , Músculo Esquelético/metabolismo , Sistema de Registros , Encuestas y Cuestionarios , Absorciometría de Fotón , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Tamaño de los Órganos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA