Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metallomics ; 13(6)2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33930157

RESUMEN

Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Evolución Molecular , Molibdeno/metabolismo , Selenio/metabolismo , Oxigenasas de Función Mixta/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo
2.
FEMS Microbiol Ecol ; 96(12)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33045045

RESUMEN

Selenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.


Asunto(s)
Selenio , Bacterias/genética , Oxidación-Reducción , Azufre
3.
Sci Rep ; 10(1): 10946, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616801

RESUMEN

Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/metabolismo , Arsénico/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metano/metabolismo , Oxidorreductasas/metabolismo , Selenio/metabolismo , Evolución Molecular , Filogenia
4.
Toxicol Appl Pharmacol ; 289(3): 397-408, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26529668

RESUMEN

Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.


Asunto(s)
Aminoácidos/metabolismo , Arsénico/farmacología , Colon/efectos de los fármacos , Colon/microbiología , Microbiota/efectos de los fármacos , Nitrógeno/metabolismo , Animales , Arginina/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Biopelículas/efectos de los fármacos , Colon/metabolismo , Genotipo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/genética , Nitratos/metabolismo , Nitrito Reductasas/metabolismo , Nitritos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-25734827

RESUMEN

Reports of ground water contamination in a southwestern Pennsylvania community coincided with unconventional shale gas extraction activities that started late 2009. Residents participated in a survey and well water samples were collected and analyzed. Available pre-drill and post-drill water test results and legacy operations (e.g., gas and oil wells, coal mining) were reviewed. Fifty-six of the 143 respondents indicated changes in water quality or quantity while 63 respondents reported no issues. Color change (brown, black, or orange) was the most common (27 households). Well type, when known, was rotary or cable tool, and depths ranged from 19 to 274 m. Chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, manganese and strontium were commonly found, with 25 households exceeding the secondary maximum contaminate level (SMCL) for manganese. Methane was detected in 14 of the 18 houses tested. The 26 wells tested for total coliforms (2 positives) and E. coli (1 positive) indicated that septic contamination was not a factor. Repeated sampling of two wells in close proximity (204 m) but drawing from different depths (32 m and 54 m), revealed temporal variability. Since 2009, 65 horizontal wells were drilled within a 4 km (2.5 mile) radius of the community, each well was stimulated on average with 3.5 million gal of fluids and 3.2 million lbs of proppant. PA DEP cited violations included an improperly plugged well and at least one failed well casing. This study underscores the need for thorough analyses of data, documentation of legacy activity, pre-drill testing, and long term monitoring.


Asunto(s)
Industria Procesadora y de Extracción , Gas Natural , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Pozos de Agua/análisis , Región de los Apalaches , Escherichia coli , Industria Procesadora y de Extracción/ética , Industria Procesadora y de Extracción/métodos , Agua Subterránea/análisis , Humanos , Metano/análisis , Gas Natural/provisión & distribución , Yacimiento de Petróleo y Gas , Pennsylvania , Población Rural , Aguas Residuales/química , Aguas Residuales/toxicidad , Calidad del Agua , Abastecimiento de Agua/análisis , Pozos de Agua/química
6.
Science ; 332(6034): 1163-6, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21127214

RESUMEN

Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.


Asunto(s)
Arseniatos/metabolismo , Arsénico/metabolismo , ADN Bacteriano/química , Halomonadaceae/crecimiento & desarrollo , Halomonadaceae/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Arseniatos/análisis , Arsénico/análisis , Arsénico/química , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , California , Medios de Cultivo , ADN Bacteriano/metabolismo , Sedimentos Geológicos/microbiología , Halomonadaceae/citología , Halomonadaceae/aislamiento & purificación , Datos de Secuencia Molecular , Fosfatos/análisis , Fósforo/análisis , Fósforo/química , Espectrometría de Masa de Ion Secundario , Vacuolas/ultraestructura , Microbiología del Agua
7.
Annu Rev Microbiol ; 60: 107-30, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16704340

RESUMEN

Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.


Asunto(s)
Arsénico/metabolismo , Bacterias/metabolismo , Selenio/metabolismo , Secuencia de Aminoácidos , Arseniato Reductasas/fisiología , Resistencia a Medicamentos , Ecología , Metilación , Datos de Secuencia Molecular , Oxidorreductasas/fisiología , Filogenia , Selenocisteína/metabolismo
8.
Int. microbiol ; 5(4): 201-207, dic. 2002.
Artículo en Inglés | IBECS | ID: ibc-30461

RESUMEN

Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as «essential toxins», they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements (AU)


La actividad microbiana es responsable de la transformación de al menos un tercio de los elementos de la tabla periódica. Estas transformaciones son resultado de procesos de asimilación, desasimilación o destoxificación, y son la piedra angular de de muchos ciclos biogeoquímicos. El arsénico y el selenio son dos elementos cuyo papel en la ecología microbiana ha sido reconocido sólo recientemente. Conocidos como «toxinas esenciales», son necesarios en concentraciones mínimas para el crecimiento y el metabolismo, pero son tóxicos a concentraciones elevadas. Algunos animales marinos utilizan el arsénico como osmólito, mientras que el selenio es necesario para formar la selenocisteína (el aminoácido 21) o como ligando de los metales en algunas enzimas (ej. FeNiSe hidrogenasa). En la resistencia al arsénico interviene una arsenato reductasa de bajo peso molecular (ArsC). El uso de oxianiones de arsénico y de selenio para la obtención de energía está muy difundido en los organismos procariotas, con representantes en el grupo Crenarchaeota, en las bacterias termófilas, las bacterias grampositivas de bajo y alto porcentaje de G+C, y entre las proteobacterias. Estudios recientes muestran que los dos elementos siguen un ciclo activo y desempeñan un papel importante en la mineralización del carbono en ciertos ambientes. La presencia de muchos mecanismos en los que intervienen diversas enzimas para la transformación del selenio y del arsénico indica que ha habido distintas rutas evolutivas (por ejemplo, convergencia, y transferencia horizontal de genes) y marca el significado ambiental de estos dos elementos y su impacto selectivo en la evolución microbiana. (AU)


Asunto(s)
Selenio , Complejos Multienzimáticos , Arsénico/metabolismo , Bacterias/metabolismo , Bombas Iónicas/metabolismo , Filogenia , Oxidorreductasas/metabolismo , Biotransformación , Adenosina Trifosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA