Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 100(5): 1022-1035, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31411777

RESUMEN

Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14 C]-acetyl-CoA to oligogalacturonides. Through site-directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Resistencia a la Enfermedad/genética , Pectinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidad , Botrytis/patogenicidad , Pared Celular/química , Pared Celular/genética , Celulosa/genética , Celulosa/metabolismo , Mutación , Pectinas/química , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética
2.
Plant J ; 94(2): 340-351, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29418030

RESUMEN

Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing ß-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-ß-l-Arap to galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Galactanos/metabolismo , Galactosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Catálisis , Galactosa/metabolismo , Microsomas/enzimología , Microsomas/metabolismo , Nucleósidos/metabolismo , Vigna/enzimología , Vigna/metabolismo
3.
Nat Commun ; 7: 12119, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27381418

RESUMEN

Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Aparato de Golgi/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/química , Pared Celular/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucanos/biosíntesis , Aparato de Golgi/química , Proteínas de Transporte de Monosacáridos/metabolismo , Pectinas/biosíntesis , Filogenia , Células Vegetales/química , Células Vegetales/metabolismo , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xilanos/biosíntesis
4.
BMC Plant Biol ; 16: 90, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27091363

RESUMEN

BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS: T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS: Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Pectinas/biosíntesis , Polen/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fertilidad/genética , Galactanos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genotipo , Glicosiltransferasas/genética , Aparato de Golgi/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo
5.
Plant Cell ; 26(8): 3314-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122154

RESUMEN

Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ácido Glucurónico/metabolismo , Glucuronosiltransferasa/fisiología , Polen/fisiología , Esfingolípidos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Silenciador del Gen , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Polen/enzimología , Polen/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/genética , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA