RESUMEN
The treatment of anxiety-based psychopathology often hinges upon extinction learning. Research in nutritional neuroscience has observed that the regular consumption of perilla oil (50% alpha-linolenic acid (ALA)) facilitates extinction learning in rats (Yamamoto et al., 1988). However, acute facilitation of extinction learning by oils rich in ALA has not been reported for rats or humans, though the acute consumption of rapeseed oil (10% ALA) has been observed to improve cognitive processing speed in humans (Jones, Sünram-Lea, & Wesnes, 2012). For this reason, the present laboratory work examined the effects of adding walnut oil (12% ALA) to a chocolate milkshake on the acquisition, generalization, and extinction of a fear-based prediction in young adults. It compared performance between subjects. The other participants consumed a similar milkshake with either an equicaloric amount of cream (saturated fat), or with no added fat (control). Acquisition and generalization of the fear-based prediction were similar for all groups. However, those who consumed walnut oil extinguished most rapidly and profoundly. Implications for extinction learning are discussed.
Asunto(s)
Grasas de la Dieta/administración & dosificación , Ingestión de Alimentos/psicología , Extinción Psicológica/efectos de los fármacos , Juglans , Aceites de Plantas/administración & dosificación , Animales , Método Doble Ciego , Femenino , Humanos , Masculino , Leche , Ratas , Adulto JovenRESUMEN
Eye Movement Desensitization and Reprocessing (EMDR) therapy for posttraumatic stress disorder involves making eye movements (EMs) during recall of a traumatic image. Experimental studies have shown that the dual task decreases self-reported memory vividness and emotionality. However valuable, these data are prone to demand effects and little can be inferred about the mechanism(s) underlying the observed effects. The current research aimed to fill this lacuna by providing two objective tests of memory performance. Experiment I involved a stimulus discrimination task. Findings were that EM during stimulus recall not only reduces self-reported memory vividness, but also slows down reaction time in a task that requires participants to discriminate the stimulus from perceptually similar stimuli. Experiment II involved a fear conditioning paradigm. It was shown that EM during recall of a threatening stimulus intensifies fearful responding to a perceptually similar yet non-threat-related stimulus, as evidenced by increases in danger expectancies and skin conductance responses. The latter result was not corroborated by startle EMG data. Together, the findings suggest that the EM manipulation renders stimulus attributes less accessible for future recall.