Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomolecules ; 12(5)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35625617

RESUMEN

Flavonoids are a diverse group of secondary plant metabolites that play an important role in the regulation of plant development and protection against stressors. The biosynthesis of flavonoids occurs through the activity of several enzymes, including chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H). A functional divergence between some copies of the structural TaCHI and TaF3H genes was previously shown in the allohexaploid bread wheat Triticum aestivum L. (BBAADD genome). We hypothesized that the specific nature of TaCHI and TaF3H expression may be induced by the methylation of the promoter. It was found that the predicted position of CpG islands in the promoter regions of the analyzed genes and the actual location of methylation sites did not match. We found for the first time that differences in the methylation status could affect the expression of TaCHI copies, but not the expression of TaF3Hs. At the same time, we revealed significant differences in the structure of the promoters of only the TaF3H genes, while the TaCHI promoters were highly homologous. We assume that the promoter structure in TaF3Hs primarily affects the change in the nature of gene expression. The data obtained are important for understanding the mechanisms that regulate the synthesis of flavonoids in allopolyploid wheat and show that differences in the structure of promoters have a key effect on gene expression.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Triticum , Flavonoides/metabolismo , Liasas Intramoleculares , Metilación , Oxigenasas de Función Mixta , Triticum/genética , Triticum/metabolismo
2.
BMC Genet ; 20(Suppl 1): 27, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885125

RESUMEN

BACKGROUND: The cultivated potato Solanum tuberosum L. is the fourth most important crop worldwide. Anthocyanins synthesis and accumulation in potato tissues are considered as one of important traits related to stress resistance and nutritional value. It is considered that the major regulatory gene for anthocyanin biosynthesis is R2R3 MYB-encoding gene StAN1. However, the genetic control of pigmentation of different potato tissues is substantially under investigated. The development of genetic markers for breeding of potato with specific pigmentation pattern remains an actual task. RESULTS: We investigated 36 potato varieties and hybrids with different pigmentation of tubers and leaves. Sequence organization of regulatory R2R3 MYB (StAN1, StMYBA1, StMYB113), bHLH (StbHLH1, StJAF13) and WD40 (StWD40) genes potentially controlling anthocyanin biosynthesis has been evaluated. The results demonstrated a high variability in the StAN1 third exon and promoter region with the exception for 35 bp, containing elements for the transcription start and activation of gene expression in roots. The analysis of transcriptional activity of genes coding R2R3 MYBs, bHLHs and WD40 transcriptional factors in leaves of eight potato genotypes with different anthocyanin pigmentation was performed. The results showed a relation between the gene expression level and plant pigmentation only for the StAN1 and StWD40 genes, while other studied genes had either strong expression in all varieties and hybrids (StMYBA1, StbHLH1 and StJAF13) or they were not expressed at all (StMYB113). CONCLUSIONS: It was found that StAN1 is the major regulatory gene controlling potato anthocyanin synthesis. However, diagnostic markers developed for the functional StAN1 alleles (StAN1777 and StAN1816) can not be used efficiently for prediction of potato pigmentation patterns. It is likely that the sequence organization of StAN1 promoter is important for anthocyanin synthesis control and the development of additional diagnostic markers is necessary.


Asunto(s)
Antocianinas/biosíntesis , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Vías Biosintéticas , Genes de Plantas , Intrones , Pigmentación , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA