Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 304: 135225, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35697102

RESUMEN

Biosynthesis of nanomaterials using plant extract makes them attractive in the field of photocatalysis as they are environmental friendly. The current study focused on the biosynthesis of ZnO/NiCo2S4 QDs (NCs) using Punica granatum fruit peel extract as the reducing agent. The nanomaterials were characterized with XRD, FTIR, Raman, SEM, TEM, UV-vis DRS, BET, PL, EIS, and ESR analysis and were used for photocatalytic degradation of doxycycline (DOX) and ciprofloxacin (CIP). The bandgap of ZnO is 3.2 eV, and the decoration of NiCo2S4 QDs aids in narrowing the bandgap (2.8 eV), making the NCs visible light active. The fabricated NCs achieved 99 and 89% degradation of DOX and CIP respectively. The photocatalytic efficiency of ZnO/NiCo2S4 QDs was much higher compared to individual ZnO and NiCo2S4 QDs. The half-life period of DOX and CIP were evaluated to be 58 and 152 min respectively. The percentage of TOC removal in the photodegraded product of DOX and CIP was estimated to be 99 and 89% respectively, indicating the mineralization of the compounds. The enhanced photocatalytic efficiency of the NCs was attributed to the narrowed visible light active bandgap, synergistic charge transfer across the interface, and lower charge recombination. The intermediates formed during the photocatalytic degradation of DOX and CIP were analyzed using GC-MS/MS analysis, and the photodegradation pathway was elucidated. Also, the toxicity of the intermediates was computationally analyzed using ECOSAR software. The fabricated ZnO/NiCo2S4 QDs have excellent stability and reusability, confirmed by XRD and XPS analysis. The reusable efficiency of the NCs for the photocatalytic degradation of DOX and CIP were 98.93, and 99.4% respectively. Thus, the biologically fabricated NCs are shown to be an excellent photocatalyst and have wide applications in environmental remediation.


Asunto(s)
Granada (Fruta) , Óxido de Zinc , Ciprofloxacina , Doxiciclina , Electrones , Frutas , Luz , Extractos Vegetales , Espectrometría de Masas en Tándem
2.
Bioorg Med Chem ; 23(15): 4710-4718, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072172

RESUMEN

In this contribution the development of a new class of vasodilating compounds obtained by lead structure optimization is described. Three groups of compounds were synthesized and tested for their activity on various smooth muscle preparations of the guinea pig. Beside the lead compound 3a, the most interesting derivative was 1H-imidazole-1-carbothioic acid O-cyclohexyl ester hydrochloride (5b) with a good selective vasodilating potential on aorta and pulmonary artery rings (EC50 14 µM and 24 µM, respectively). Due to the properties of small molecules the hydrolysis behavior of the compounds can be easily adapted hence opening a new route in terms of duration of the agent's effect. With the aid of structure-activity relationship studies, structural motifs influencing the biological activity on isolated smooth muscle cell preparations of the synthesized compounds were proposed. The presented compounds offer good tools in identifying promising molecules as emergency therapy in myocardial infarction.


Asunto(s)
Músculo Liso Vascular/efectos de los fármacos , Urea/química , Vasodilatadores/química , Vasodilatadores/farmacología , Animales , Aorta/fisiología , Evaluación Preclínica de Medicamentos , Cobayas , Semivida , Hidrólisis , Espectroscopía de Resonancia Magnética , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Arteria Pulmonar/fisiología , Relación Estructura-Actividad , Urea/metabolismo , Urea/farmacología , Vasodilatadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA