Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 13(11): e0207280, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30427920

RESUMEN

The cool virulent Ralstonia solanacearum race 3 biovar 2 (r3b2) strains cause destructive brown rot of potato. They are quarantined pathogens in Europe and Canada and select agent pathogens in the United States. We previously identified r3b2 (sequevars 1 and 2)-unique fragments that clustered into 32 regions in the genome of R. solanacearum. In this study, we targeted five of those regions for mutagenesis in order to determine whether they are involved in cool temperature-related biological functions for diagnostic purpose. Knockout mutants of four regions produced no changes to the biology of the r3b2 strain UW551. The mutation of region 13, which is 3,407 bp in size, resulted in significantly reduced twitching motility, attachment to the roots of tomato seedlings, and virulence under cool temperature conditions (18-24°C), although no significant difference was found under warm temperature conditions (24-30°C) as compared to the wild type strain. As a result, we designed primer pair Rs-CV-F and Rs-CV-R to target the region 13 for specific detection of r3b2 strains of R. solanacearum. Our assay specifically detected all the 34 r3b2 strains and none of the 56 non-r3b2 strains of R. solanacearum, nor any other five plant- or soil-associated bacteria including Enterobacter cloacae, Pseudomonas syringae pv. syringae, Xanthomonas campestris pv. campestris, X. citri, and R. pickettii. Unexpectedly, in silico analysis predicted that a recently deposited non-sequevar 1 or 2 Brazilian R. solanacearum strain RS489 would be recognized by our assay and by previously published r3b2-specific assays, although the cool-virulent status of this strain is unclear. Our PCR assay is the first to target a DNA region associated with cool-virulence that makes r3b2 strains highly regulated pathogens for specific detection of this important group of R. solanacearum.


Asunto(s)
ADN Bacteriano/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Ralstonia solanacearum/genética , Solanum tuberosum/microbiología , Frío , ADN Bacteriano/análisis , Ralstonia solanacearum/patogenicidad , Transcriptoma , Virulencia
2.
Curr Microbiol ; 73(4): 542-9, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27402488

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is destructive to many plant species worldwide. The race 3 biovar 2 (r3b2) strains of R. solanacearum infect potatoes in temperate climates and are listed as select agents by the U.S. government. TaqMan-based real-time quantitative PCR (qPCR) is commonly used in federal and state diagnostic laboratories over conventional PCR due to its speed and sensitivity. We developed the Rs16S primers and probe set and compared it with a widely used set (RS) for detecting R. solanacearum species complex strains. We also developed the RsSA3 primers and probe set and compared it with the previously published B2 and RsSA2 sets for specific detection of r3b2 strains. Both comparisons were done under standardized qPCR master mix and cycling conditions. The Rs16S and RS assays detected all 90 R. solanacearum species complex strains and none of the five outgroups, but the former was more sensitive than the latter. For r3b2 strain detection, the RsSA2 and RsSA3 sets specifically detected the 34 r3b2 strains and none of the 56 R. solanacearum non-r3b2 strains or out-group strains. The B2 set, however, detected five non-r3b2 R. solanacearum strains and was less sensitive than the other two sets under the same testing conditions. We conclude that the Rs16S, RsSA2, and RsSA3 sets are best suited under the standardized conditions for the detection of R. solanacearum species complex and r3b2 strains by TaqMan-based qPCR assays.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Ralstonia solanacearum/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Solanum tuberosum/microbiología , Técnicas de Tipificación Bacteriana/instrumentación , Cartilla de ADN/genética , Ralstonia solanacearum/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación
3.
PLoS One ; 10(10): e0139637, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26426354

RESUMEN

Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.


Asunto(s)
Bioensayo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Enfermedades de las Plantas/genética , Ralstonia solanacearum/genética , Solanum lycopersicum/genética , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA