RESUMEN
Background: L-carnitine is an endogenous vitamin-like amino acid derivate which plays an essential role in energy metabolism and can be easily lost via dialysis. Deficiency of L-carnitine has great effects on many aspects of bodily functions. To determine the deficiency degree and adjust the supplementation dose, a rapid, sensitive, and specific method for the detection of endogenous L-carnitine in the plasma of dialysis patients using ultra-high performance liquid chromatography-Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap-HRMS) was developed and validated. Methods: The plasma samples were processed by protein precipitation and centrifugation before analysis using UHPLC-Orbitrap-HRMS. Sample separation was achieved with a hydrophilic interaction liquid chromatography (HILIC) column, using an isocratic elution with a runtime of 5 min. The separated analytes were detected by positive ionization mode in full scan mode and targeted-single ion monitoring (t-SIM) mode. Mildronate was used as the internal standard (IS). Results: All the plasma could be detected in the range of 6.169 to 197.394 µM, with adequate accuracy, precision, and recovery. The method was validated in fortified validation with relative standard deviations (RSD) 5.15-8.74%. This method was applied to the analysis of 105 dialysis patients and 39 healthy participants, the results revealed that peritoneal dialysis patients without L-carnitine supplementation should pay more attention to L-carnitine monitoring, meanwhile, all the hemodialysis patients were advised to be routinely given a full dose of L-carnitine, no matter whether they had taken L-carnitine or not. Conclusions: This study developed a simple and rapid UHPLC-Orbitrap-HRMS method for detection of endogenous L-carnitine in dialysis patients, which could be useful to promote rational drug use.
RESUMEN
The present study was designed to examine the therapeutic effects of Botulinum neurotoxin A (BoNT/A) on depression-like behaviors in mice and to explore the potential mechanisms. These results revealed that a single facial injection of BoNT/A induced a rapid and prolonged improvement of depression-like behaviors in naïve and space-restriction-stressed (SRS) mice, reflected by a decreased duration of immobility in behavioral despair tests. BoNT/A significantly increased the 5-hydroxytryptamine (5-HT) levels in several brain regions, including the hippocampus and hypothalamus, in SRS mice. BoNT/A increased the expression of the N-methyl-D-aspartate receptor subunits NR1 and NR2B in the hippocampus, which were significantly decreased in SRS mice. Furthermore, BoNT/A significantly increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, hypothalamus, prefrontal cortex, and amygdala, which were decreased in SRS mice. Finally, BoNT/A transiently increased the levels of phosphorylated extracellular signal-regulated kinase (p-ERK) and cAMP-response element binding protein (p-CREB), which were suppressed in the hippocampus of SRS mice. Collectively, these results demonstrated that BoNT/A treatment has anti-depressant-like activity in mice, and this is associated with increased 5-HT levels and the activation of BDNF/ERK/CREB pathways in the hippocampus, supporting further investigation of BoNT/A therapy in depression.