Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 79: 127213, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244045

RESUMEN

BACKGROUND: Human Adenovirus (HAdV) can cause severe respiratory symptoms in people with low immunity and there is no targeted treatment for adenovirus infection. Anti-adenoviral drugs have high clinical significance for inhibiting adenovirus infection. Selenium (Se) plays an important role in anti-oxidation, redox signal transduction, and redox homeostasis. The excellent biological activity of Se is mainly achieved by being converted into selenocystine (SeC). Se participates in the active sites of various selenoproteins in the form of SeC. The ability of SeC to resist the virus has raised high awareness due to its unique antioxidative activity in recent years. The antiviral ability of the SeC was determined by detecting the infection rate of the virus in the cells. METHODS: The experiment mainly investigated the antiviral mechanism of SeC by locating the virus in the cell, detecting the generation of ROS, observing the DNA status of the cell, and monitoring the mitochondrial membrane potential. RESULTS: In the present study, SeC was designed to resist A549 cells infections caused by HAdV-14. SeC could prevent HAdV-14 from causing cell apoptosis-related to DNA damage. SeC significantly inhibited ROS generation and protect the cells from oxidative damage induced by ROS against HAdV-14. SeC induced the increase of antiviral cytokines such as IL-6 and IL-8 by activating the Jak2 signaling pathway, and repaired DNA lesions by suppressing ATR, p53, and PARP signaling pathways. CONCLUSION: SeC might provide an effective selenium species with antiviral properties for the therapies against HAdV-14.


Asunto(s)
Infecciones por Adenoviridae , Adenovirus Humanos , Selenio , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Adenovirus Humanos/genética , Selenio/farmacología , Selenio/metabolismo , Apoptosis , Antivirales/farmacología , Transducción de Señal
2.
Theranostics ; 13(6): 1843-1859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064873

RESUMEN

Background: Influenza A (H1N1) virus is an acute respiratory infectious disease that causes massive morbidity and mortality worldwide. As an essential trace element, selenium is widely applied in the treatment of various diseases because of its functions of enhancing immune response, antioxidant and antiviral mutation. In this study, we constructed the selenium-containing metal complex drug delivery system Ru(biim)(PhenSe)2 (RuSe), and investigated the anti-influenza virus efficacy and the potential antiviral mechanism for RuSe. Methods: The inhibitory effect of RuSe on influenza-mediated apoptosis was examined by cell count assay, cell cycle assay, Annenxin-V assay, TUNEL-DAPI assay and reactive oxygen species level determination. Virulence assay, PCR and neuraminidase inhibition assay revealed the inhibition of RuSe on influenza virus. At the level of animal experiments, two animal models were used to clarify the role of RuSe through HE staining, immunohistochemical staining, cytokine determination, selenium metabolism determination and selenium protein expression level determination. Results: The results of this study confirm that RuSe enhances the expression levels of selenium proteins GPx1 and TrxR1 by regulating selenium metabolism, thereby inhibiting viral replication and assembly and regulating virus-mediated mitochondria-related apoptosis. On the other hand, animal experiments show that RuSe can reduce lung tissue inflammation and inhibit lung tissue cell apoptosis in mice, and improve the survival state of mice. In addition, RuSe significantly improves the low immune response of Se-deficient mice by regulating selenium metabolism, and effectively alleviated lung fibrosis and lung tissue apoptosis in Se-deficient mice. Conclusions: This study suggests that RuSe provides a promising new approach for the clinical treatment of influenza virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Rutenio , Selenio , Ratones , Animales , Selenio/farmacología , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA