Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621925

RESUMEN

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogénicas c-akt , Semen , Microtomografía por Rayos X , Fosfatidilinositol 3-Quinasas , Ratas Sprague-Dawley , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inducido químicamente
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1438-1445, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621927

RESUMEN

Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.


Asunto(s)
Aconitina/análogos & derivados , Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Simulación del Acoplamiento Molecular , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , ARN Mensajero , Medicamentos Herbarios Chinos/farmacología
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621928

RESUMEN

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Asunto(s)
Artritis Reumatoide , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Membrana Sinovial , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Perfilación de la Expresión Génica/métodos
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1429-1437, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621926

RESUMEN

This study aims to explore the mechanism of aqueous extract of Strychni Semen(SA) in relieving pain in the rat model of rheumatoid arthritis(RA) via Toll-like receptor 4(TLR4)/tumor necrosis factor-α(TNF-α)/matrix metalloproteinase-9(MMP-9) signaling pathway. Firstly, the main chemical components of Strychni Semen were searched against TCMSP, TCMID, ETCM, and related literature, and the main targets of the chemical components were retrieved from TargetNet and SwissTargetPrediction. The main targets of RA and pain were searched against GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). Venny 2.1.0 was used to obtain the common targets shared by Strychni Semen, RA, and pain, and STRING and Cytoscape 3.6.1 were used to build the protein-protein interaction network. Then, molecular docking was carried out in AutoDock Vina. Finally, the rat model of type Ⅱ collagen-induced arthritis(CIA) was established. The up-down method and acetone method were employed to examine the mechanical pain threshold and cold pain threshold of rats, and the pain-relieving effect of SA on CIA rats was evaluated comprehensively. Hematoxylin-eosin(HE) staining was employed to evaluate the histopathological changes of joints in CIA rats. The expression levels of key target proteins was determined by immunohistochemistry and Western blot, and the mRNA levels of key targets were determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). The results of network prediction showed that Strychni Semen may act on the TLR4/TNF-α/MMP-9 signaling pathway to exert the pain-relieving effect. The results of molecular docking showed that brucine, the main active component of SA, had strong binding ability to TLR4, TNF-α, and MMP-9. The results of animal experiments showed that SA improved the mechanical and cold pain sensitivity(P<0.05, P<0.01) and reduced the joint histopathological score of CIA rats(P<0.01). In addition, medium and high doses of SA down-regulated the protein and mRNA levels of TNF-α, TLR4, and MMP-9(P<0.05,P<0.01). In conclusion, SA alleviated the mechanical pain sensitivity, cold pain sensitivity, and joint histopathological changes in CIA rats by inhibiting the over activation of TLR4/TNF-α/MMP-9 signaling pathway.


Asunto(s)
Artritis Reumatoide , Factor de Necrosis Tumoral alfa , Humanos , Ratas , Animales , Factor de Necrosis Tumoral alfa/genética , Metaloproteinasa 9 de la Matriz/genética , Semen , Simulación del Acoplamiento Molecular , Receptor Toll-Like 4/genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Transducción de Señal , Dolor/tratamiento farmacológico , ARN Mensajero
5.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4173-4186, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802786

RESUMEN

Neuropathic pain(NP) has similar phenotypes but different sequential neuroinflammatory mechanisms in the pathological process. It is of great significance to inhibit the initiation of neuroinflammation, which has become a new direction of NP treatment and drug development in recent years. Mongolian drug Naru-3 is clinically effective in the treatment of trigeminal neuralgia, sciatica, and other NPs in a short time, but its pharmacodynamic characteristics and mechanism of analgesia are still unclear. In this study, a spinal nerve ligation(SNL) model simulating clinical peripheral nerve injury was established and the efficacy and mechanism of Naru-3 in the treatment of NPs was discussed by means of behavioral detection, side effect evaluation, network analysis, and experimental verification. Pharmacodynamic results showed that Naru-3 increased the basic pain sensitivity threshold(mechanical hyperalgesia and thermal radiation hyperalgesia) in the initiation of SNL in animals and relieved spontaneous pain, however, there was no significant effect on the basic pain sensitivity threshold and motor coordination function of normal animals under physiological and pathological conditions. Meanwhile, the results of primary screening of target tissues showed that Naru-3 inhibited the second phase of injury-induced nociceptive response of formalin test in mice and reduced the expression of inflammatory factors in the spinal cord. Network analysis discovered that Naru-3 had synergy in the treatment of NP, and its mechanism was associated with core targets such as matrix metalloproteinase-9(MMP9) and interleukin-1ß(IL-1ß). The experiment further took the dorsal root ganglion(DRG) and the stage of patho-logical spinal cord as the research objects, focusing on the core targets of inducing microglial neuroinflammation. By means of Western blot, immunofluorescence, agonists, antagonists, behavior, etc., the mechanism of Naru-3 in exerting NP analgesia may be related to the negative regulation of the MMP9/IL-1ß signaling pathway-mediated microglia p38/IL-1ß inflammatory loop in the activation phase. The relevant research enriches the biological connotation of Naru-3 in the treatment of NP and provides references for clinical rational drug use.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Neuralgia , Ratas , Ratones , Animales , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Médula Espinal/metabolismo , Transducción de Señal , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3855-3864, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475077

RESUMEN

This paper aims to investigate the intervention effect of Qufeng Gutong Cataplasm(QFGT) on myofascial pain syndrome(MPS) in rats and to preliminarily explain its mechanism from the perspective of improving muscle inflammation and pain. Male SD rats were divided into 6 groups, namely normal group, model group, positive control drug(Huoxue Zhitong Ointment, HXZT) group, and low, medium, and high-dose QFGT groups(75, 150, and 300 mg·d~(-1)). The rat model of MPS was established by striking combined with centrifugation for 8 weeks, during which QFGT and HXZT were used for corresponding intervention. Standard VonFrey fiber was used to evaluate the mechanical pain threshold, and acetone was used to detect the cold pain threshold. The electrophysiological activity of muscle at trigger point was detected, and the electromuscular analysis of trigger point was performed. CatWalk gait analyzer was used to detect pain-induced gait adaptation changes. The hematoxylin-eosin(HE) staining was used to observe the pathological changes in muscle and skin tissues at the trigger point of rats. Immunohistochemistry was used to detect the expression of capsaicin receptor transient receptor potential vanilloid 1(TRPV1) in muscle tissues and interleukin(IL)-33 in skin tissues at the trigger point. The protein expression levels of TRPV1, protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), IL-1ß, and tumor necrosis factor-α(TNF-α) in muscle tissues at the trigger point were detected by Western blot. The results showed that as compared with the model group, the mechanical pain threshold and cold pain threshold of rats in other groups were increased after treatment with QFGT. The spontaneous electromyography(EMG) activity was observed in the model group, but QFGT alleviated the EMG activity in a dose-dependent manner. Gait analysis showed that standing duration, average intensity, swing speed, maximum contact point, maximum contact area, paw print length, paw print width, and paw print area were significantly improved in all QFGT groups. Pathological results showed that the disorder of muscle arrangement at the trigger point was decreased, muscle fiber adhesion and atrophy were reduced, and inflammatory cell infiltration was alleviated after treatment with QFGT. In addition, QFGT and HXZT both inhibited the protein expression of TRPV1, PI3K, Akt, p-Akt, IL-1ß, and TNF-α in the muscle tissues of rats with MPS. However, there was no significant difference in the pathological structure and expression of IL-33 in the treated skin as compared with the normal group. The related results have proved that QFGT can inhibit the release of inflammatory factors by inhibiting the TRPV1/PI3K/Akt signaling pathway in the muscle trigger point of rats with MPS and finally attenuate the atrophy and adhesion of local muscles and inflammatory infiltration, thereby relieving the muscle pain of rats with MPS, and local administration has no skin irritation.


Asunto(s)
Síndromes del Dolor Miofascial , Proteínas Proto-Oncogénicas c-akt , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa , Fosfatidilinositol 3-Quinasas , Síndromes del Dolor Miofascial/tratamiento farmacológico , Dolor
7.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1343-1351, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005818

RESUMEN

The present study investigated the mechanism of artesunate in the treatment of bone destruction in experimental rheumatoid arthritis(RA) based on transcriptomics and network pharmacology. The transcriptome sequencing data of artesunate in the inhibition of osteoclast differentiation were analyzed to obtain differentially expressed genes(DEGs). GraphPad Prism 8 software was used to plot volcano maps and heat maps were plotted through the website of bioinformatics. GeneCards and OMIM were used to collect information on key targets of bone destruction in RA. The DEGs of artesunate in inhibiting osteoclast differentiation and key target genes of bone destruction in RA were intersected by the Venny 2.1.0 platform, and the intersection target genes were analyzed by Gene Ontology(GO)/Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment. Finally, the receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model and collagen-induced arthritis(CIA) model were established. Quantitative real time polymerase chain reaction(q-PCR), immunofluorescence, and immunohistochemistry were used to verify the pharmacological effect and molecular mechanism of artesunate in the treatment of bone destruction in RA. In this study, the RANKL-induced osteoclast differentiation model in vitro was established and intervened with artesunate, and transcriptome sequencing data were analyzed to obtain 744 DEGs of artesunate in inhibiting osteoclast differentiation. A total of 1 291 major target genes of bone destruction in RA were obtained from GeneCards and OMIM. The target genes of artesunate in inhibiting osteoclast differentiation and the target genes of bone destruction in RA were intersected to obtain 61 target genes of artesunate against bone destruction in RA. The intersected target genes were analyzed by GO/KEGG enrichment. According to the results previously reported, the cytokine-cytokine receptor interaction signaling pathway was selected for experimental verification. Artesunate intervention in the RANKL-induced osteoclast differentiation model showed that artesunate inhibited CC chemokine receptor 3(CCR3), CC chemokine receptor 1(CCR1) and leukemia inhibitory factor(LIF) mRNA expression in osteoclasts in a dose-dependent manner compared with the RANKL-induced group. Meanwhile, the results of immunofluorescence and immunohistochemistry showed that artesunate could dose-dependently reduce the expression of CCR3 in osteoclasts and joint tissues of the CIA rat model in vitro. This study indicated that artesunate regulated the CCR3 in the cytokine-cytokine receptor interaction signaling pathway in the treatment of bone destruction in RA and provided a new target gene for the treatment of bone destruction in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , Artritis Experimental/tratamiento farmacológico , Artesunato/farmacología , Artesunato/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Transcriptoma , Farmacología en Red , Osteoclastos , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Citocinas/uso terapéutico
8.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6457-6474, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212003

RESUMEN

The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects. Baimai Ointment inhibited the second-phase nociceptive response of mice in the formalin test, increased the hot plate threshold of normal mice, and down-regulated the expression of inflammatory cytokines in the spinal cord. Network analysis showed that Baimai Ointment had synergistic effect in the treatment of CCD and was related to descending inhibition/facilitation system and neuroinflammation. Furthermore, behavioral tests, Western blot, and immunofluorescence assay revealed that the pain-relieving effect of Baimai Ointment on CCD may be related to the regulation of the interaction between neuroactive ligand and receptors(neuroligands) such as CHRNA7, ADRA2A, and ADRB2, and the down-regulation of the expression of NOS2/pERK/PI3K, the core regulatory element of HIF-1 signaling pathway in spinal microglia. The findings preliminarily reveal the mechanism of relaxing sinew and activating collaterals of Baimai Ointment in the treatment of Baimai disease, providing a reference for the rational drug use and further research of this agent.


Asunto(s)
Dolor Crónico , Medicamentos Herbarios Chinos , Ratas , Ratones , Animales , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Ligandos , Transducción de Señal , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5327-5335, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36472040

RESUMEN

Based on the network pharmacology, molecular docking, and animal experiment, this study explored the anti-rheumatoid arthritis(RA) mechanism of Sophorae Tonkinesis Radix et Rhizoma(STRR). The active components of STRR were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicine Integrative Database(TCMID), and previous research, main targets of STRR from TCMSP and SwissTargetPrediction, and targets of RA from GeneCards, DrugBank, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). The common targets of the two were screened by Venny 2.1.0. Cytoscape 3.6.0 was used to generate the "component-target" network, and STRING and Cytoscape were used to construct the protein-protein interaction(PPI) network. DAVID 6.8 was employed for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and AutoDock Vina for molecular docking. Finally, collagen-induced rheumatoid arthritis(CIA) mouse model was constructed, and the expression of core target proteins was detected by Western blot. A total of 27 active components, including quercetin, genistein, kaempferol, subprogenin C, and daidzein, and 154 anti-RA targets, such as signal transducer and activator of transcription 3(STAT3), tumor necrosis factor(TNF), mitogen-activated protein kinase 1(MAPK1), AP-1 transcription factor subunit(JUN), and interleukin 6(IL6), of STRR were screened out. It was preliminarily indicated that STRR may regulate phosphatidylinositol-3-kinase-protein kinase B(PI3 K-AKT) signaling pathway and TNF signaling pathway to modulate the positive regulation of RNA polymerase Ⅱ promoter transcription, inflammatory response, and other biological processes, thus exerting the anti-RA effect. The results of molecular docking showed that the main active components in STRR had high binding affinity to the core targets. Animal experiment suggested that the water extract of STRR can significantly reduce the levels of p-STAT3, p-MAPK1, and TNF. This study demonstrated the multi-component, multi-target and multi-pathway synergistic effect of STRR in the treatment of RA, laying an experimental basis for clinical application of this medicine.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Animales , Ratones , Simulación del Acoplamiento Molecular , Farmacología en Red , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/genética , Factor de Necrosis Tumoral alfa , Interleucina-6 , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China
10.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2698-2704, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35718489

RESUMEN

This study aimed to explore the effect of artesunate(ARS) on bone destruction in rheumatoid arthritis(RA) based on the aryl hydrocarbon receptor(AhR)/AhR nucleart ranslocator(ARNT)/NAD(P)H quinone dehydrogenase 1(NQO1) signaling pathway. Macrophage-colony stimulating factor(M-CSF) and receptor activator of nuclear factor-κB(RANKL) were used to induce the differentiation of primary bone marrow-derived mouse macrophages into osteoclasts. After intervention with ARS(0.2, 0.4, and 0.8 µmol·L~(-1)), the formation and differentiation of osteoclasts were observed by tartrate-resistant acid phosphatase(TRAP) and F-actin staining. The protein expression levels of AhR and NQO1 were detected by Western blot, and their distribution in osteoclasts was observed by immunofluorescence localization. Simultaneously, the collagen induced arthritis(CIA) rat model was established using type Ⅱ bovine collagen emulsion and then treated with ARS(7.5, 15, and 30 mg·kg~(-1)) by gavage for 30 days. Following the observation of spinal cord and bone destruction in CIA rats by Masson staining, the expression of AhR and ARNT in rat knee joint tissue was measured by immunohistochemistry and the NQO1 protein expression in the knee joint tissue by Western blot. The results showed that a large number of TRAP-positive cells were present in RANKL-induced rats. Compared with the RANKL-induced group, ARS(0.2, 0.4, and 0.8 µmol·L~(-1)) inhibited the number of TRAP-positive cells in a dose-dependent manner. F-actin staining results showed that the inhibition of F-actin formation was enhanced with the increase in ARS dose. As revealed by Western blot and immunofluorescence assay, ARS significantly promoted the expression of AhR and its transfer to the nucleus, thereby activating the protein expression of downstream ARNT and antioxidant enzyme NQO1. At the same time, the CIA rat model was successfully established. Masson staining revealed serious joint destruction in the model group, manifested by the failed staining of surface cartilage, disordered arrangement of collagen fibers, and unclear boundaries of cartilage and bone. The positive drug and ARS at different doses all improved cartilage and bone destruction to varying degrees, with the best efficacy detected in the high-dose ARS group. According to immunohistochemistry, ARS promoted AhR and ARNT protein expression in knee cartilage and bone of CIA rats and also NQO1 protein expression in rat knee and ankle joint tissues. In conclusion, ARS inhibited osteoclast differentiation by activating the AhR/ARNT/NQO1 signaling pathway, thus alleviating RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Actinas/metabolismo , Animales , Artesunato/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/farmacología , Bovinos , Colágeno Tipo II/metabolismo , Ratones , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Osteoclastos , Ratas , Transducción de Señal
11.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6438-6449, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604890

RESUMEN

Colquhounia Root Tablets, prepared from Tripterygium, is effective for rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy. However, the adverse reactions, such as liver injury, nausea, and vomiting, limit its application. This study aims to evaluate the advantages and risk of Colquhounia Root Tablets and its key active components in the treatment of rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy and explore the potential mechanism in treating different diseases based on in vitro efficacy and toxicity assessment and biomolecular network analysis. First, the components of Colquhounia Root Tablets absorbed in blood were detected via ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry, and the influence of Colquhounia Root Tablets and its key components triptolide and celastrol on viability of human hepatocyte L02, human rheumatoid fibroblast-like synovial cell MH7 A, human renal tubular epithelial cell HK-2, and mouse podocyte MPC-5 was detected by cell counting kit 8(CCK8) assay. Then the expression of inflammatory cytokines of MH7 A and HK-2 cells was detected by enzyme-linked immunosorbent assay(ELISA). Moreover, the expression of nephrin and podocin in MPC-5 cells was measured by Western blot, and the expression of cytoskeletal protein by immunofluorence assay. Candidate targets of components from Colquhounia Root Tablets absorbed in blood were retrieved from TCMIP v2.0, and targets of the three diseases from GEO. The "disease-related genes-drug targets" network was constructed based on STRING, followed by pathway enrichment. Finally, molecular docking was performed by AutoDock Vina to explore the binding affinity of triptolide and celastrol with putative targets in the key signaling pathway. RESULTS:: showed that Colquhounia Root Tablets, triptolide, and celastrol can obviously reduce the levels of inflammatory cytokines in supernatant of MH7 A and HK-2 cells and enhance the expression of nephrin and podocin in MPC-5 cells. In addition, triptolide had the strongest toxicity to L02 cells, while Huobahuagen Tablets had the least toxicity to hepatocytes. Network analysis revealed that Colquhounia Root Tablets may intervene the three diseases through PI3 K/HIF1α/NOS signaling pathway. Both triptolide and celastrol had high binding affinities to corresponding targets in this signaling pathway. In conclusion, Colquhounia Root Tablets exerts similar effects on rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy to triptolide and celastrol, but the toxicity was lower. PI3 K/HIF1α/NOS signaling pathway may be the common pathway of Colquhounia Root Tablets in the treatment of the three diseases.


Asunto(s)
Artritis Reumatoide , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Glomerulonefritis Membranosa , Humanos , Animales , Ratones , Simulación del Acoplamiento Molecular , Citocinas , Artritis Reumatoide/tratamiento farmacológico , Comprimidos , Medicamentos Herbarios Chinos/uso terapéutico
12.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6730-6740, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604923

RESUMEN

Chronic inflammatory pain is mainly manifested by peripheral sensitization. Baimai Ointment(BMO), a classical Tibetan medicine for external use, has good clinical efficacy in the treatment of chronic inflammatory pain, while its pharmacodynamics and mechanism for relieving peripheral sensitization remain unclear. This study established an animal model of chronic inflammatory pain induced by complete Freund's adjuvant to explore the mechanism of BMO in the treatment of chronic inflammatory pain by behavioral test, side effect assessment, network analysis, and experimental verification. The pharmacodynamics experiment showed that BMO increased the thresholds of mechanical pain sensitivity and thermal radiation pain sensitivity of chronic inflammatory pain mice in a dose-dependent manner, and had inhibitory effect on foot swelling, inflammatory mediator, and the expression of transient receptor potential vanilloid-1(TRPV1) and transient receptor potential A1(TRPA1). The results of body weight monitoring, pain sensitivity threshold detection in normal mice, rotarod performance test, and forced swimming test showed that BMO had no obvious toxic or side effect. The network analysis of 51 candidate active molecules selected according to the efficacy of BMO, content of main components, and ADME parameters showed that the inhibitory effect of BMO on chronic inflammatory pain was associated with the core regulatory elements of tumor necrosis factor(TNF) and T cell receptor signaling pathways. BMO down-regulated the protein levels of mitogen-activated protein kinase 14(MAPK14), MAPK1, and prostaglandin-endoperoxide synthase 2(PTGS2), and up-regulated the phosphorylation le-vel of glycogen synthase kinase 3 beta(GSK3 B) in the plantar tissue of mice. In conclusion, BMO can effectively relieve peripheral sensitization of chronic inflammatory pain without inducing tolerance and obvious toxic and side effects. The relevant mechanism may be related to the regulation of BMO on core regulatory elements of TNF and T cell receptor signaling pathways in surrounding tissues.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Hiperalgesia , Ratones , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Glucógeno Sintasa Quinasa 3/efectos adversos , Glucógeno Sintasa Quinasa 3/metabolismo , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Canales Catiónicos TRPV/efectos adversos
13.
Zhongguo Zhong Yao Za Zhi ; 46(7): 1763-1768, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33982480

RESUMEN

To analyze the study advance of Sophorae Tonkinensis Radix et Rhizoma, this study utilized CiteSpace 5.6.R5 software to conduct bibliometrics analysis on the Chinese literatures of Sophorae Tonkinensis Radix et Rhizoma from 1990 to 2020 included in the CNKI database retrieval platform. The analysis contents involved the number of published papers, co-authors, cooperative institutions, emergence, co-occurrence and clustering of keywords. A total of 808 Chinese literatures were included in the study, of which 17 were published by SUN Rong, the author with the most published papers, and formed a research team centered on SUN Rong; the analysis of the cooperation of publishing institutions showed that the Drug Safety Evaluation Research Center, Shanghai University of Traditional Chinese Medicine was the organization with the largest number of publications, with a total of 29 articles. It also formed a scientific research coorperation institution with Shandong Academy of Traditional Chinese Medicine as the core, and formed a relatively close cooperative network relationship. The analysis of literature keywords showed that the research direction was concentrated on the traditional Chinese medicine of Sophorae Tonkinensis Radix et Rhizoma, pharmacological mechanism, and side effects, active ingredients, etc. Among them, the research on the efficacy and toxicity of the active ingredients of Sophorae Tonkinensis Radix et Rhizoma has become a hot trend.


Asunto(s)
Medicamentos Herbarios Chinos , Sophora , China , Medicina Tradicional China , Rizoma
14.
Zhongguo Zhong Yao Za Zhi ; 46(1): 1-5, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33645044

RESUMEN

Ischemic stroke is the leading cause of death and disability in adults in China. Recent studies have shown that neutrophil extracellular traps play a crucial role in occurrence and development of ischemic stroke. This paper reviewed the literatures on NETs since the discovery of NETs more than a decade ago, and summarized the composition of NETs, the effects of NETs on stroke, the intervention targets of NETs, and the effects of traditional Chinese medicine on NETs. NETs are an important cause of brain injury after stroke. Platelets, peptidylarginine deiminase 4, reactive oxygen species and histones are the targets to regulate NET formation in stroke. There are few researches on traditional Chinese medicine targeting NETs for stroke. Studies on the intervention of traditional Chinese medicine mainly target on neutrophils, which are the main components of NETs, and platelets, which induce the formation of NETs. The paper provided a comprehensive overview of current studies of NETs in ischemic stroke, so as to provide new ideas for the treatment and drug development of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Trampas Extracelulares , Accidente Cerebrovascular Isquémico , Medicina Tradicional China , Accidente Cerebrovascular , Adulto , Isquemia Encefálica/tratamiento farmacológico , China , Humanos , Accidente Cerebrovascular/tratamiento farmacológico
15.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1043-1052, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787095

RESUMEN

To analyze the study advance of Strychni Semen, a kind of traditional Chinese medicine, this study systematically retrieved the related Chinese literatures about Strychni Semen from CNKI database platforms and the core database of Web of Science, and used bibliometrics and CiteSpace 5.6.R5 software to visually display the authors, research institutions, keywords and other contents. A total of 1 895 Chinese literatures and 1 599 English literatures were included in the study. The analysis of Chinese and English literature authors showed that CAI Bao-chang and CHEN Jun had the most publications on Strychni Semen, and CAI Bao-chang's team was the core research team. According to the analysis of publishing institutions, Nanjing University of Traditional Chinese Medicine and Chinese Academy of Science were the research institutions with the largest number of Chinese and English literatures, respectively. But there was less cooperation between Chinese and English study institutions. The analysis of keywords in Chinese and English literatures showed that the research contents of Strychni Semen mainly focused on component analysis, research methods, receptor targets, clinical application, synergistic and attenuation measures. Break analysis showed that the apoptosis induced by Strychni Semen was a hot research topic, and research on components, toxicity and pharmacokinetics will be the research hotspot in future. The research on Strychni Semen is still in the developing period. This study has provided reference for the rapid grasp of the research contents and the judgment of research hotspots.


Asunto(s)
Medicina Tradicional China , Semen , Bibliometría , Bases de Datos Factuales , Proyectos de Investigación
16.
Food Chem Toxicol ; 148: 111961, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385513

RESUMEN

Isodon amethystoides (Benth.) Hara (IA) tea is a commonly used dietetic Chinese herb and employed for the treatments of tumor and lung abscess. To assess chemical composition and antioxidant capacity of IA leaves extract, a UPLC-LTQ-Orbitrap-MS method and antioxidant tests were used, respectively. 17 compounds were identified including Vinyl caffeate (1), 3,4-dimethoxyphenyl-ß-D-glucopyranoside (2), Rutin (3), Quercetin (4), Loliolide (5), Caffeic acid (6), Rubesanolide D (7), Isorhamnetin (8), Lambertic acid (9), 6, 7-Dehydroroyleanone (10), Dihydrorabdokunmin C (11), Nervosin (12), Quercitrin (13), Vitexin (14), ß-sitosterol (15), Wangzaozin A (16), Amethystonoic acid (17). Among these, 1-14 compounds were novel and have not been reported ever before in IA while component 10 was a novel finding within this genus. Flavonoid components showed better free radical scavenging ability and profound correlation was observed between diterpenoid compounds content and flavonoids activity. Our results provide experimental basis for extraction and separation of chemical constituents of IA which are antioxidant in nature.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Depuradores de Radicales Libres/análisis , Isodon/química , Fitoquímicos/análisis , Hojas de la Planta/química , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Espectrometría de Masas , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación
17.
Zhongguo Zhong Yao Za Zhi ; 45(4): 755-763, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237475

RESUMEN

The aim of this paper was to observe the toxic effect of Tripterygium Glycosides Tablets on the reproductive system of Ⅱ type collagen induced arthritis(CIA) male rats, and to explore the toxic mechanism preliminarily. Fifty SD rats were randomly divided into normal control group(Con), model group(CIA), Tripterygium Glycosides Tablets clinical equivalent dose groups of 1, 2, 4 times(9, 18, 36 mg·kg~(-1)), 10 rats in each group, and were given by gavage once a day for 42 days after the first immunization. The organ index of testis and epididymis were calculated on days 21 and 42. Histopathological and morphological changes of testis and epididymis were observed under optical microscope. Sperm count, sperm malformation rate and sperm kinetic parameters in epididymal tissues were observed by computer assisted sperm analysis(CASA). The concentration of testosterone(T), nitric oxide synthase(NOS) and aromatase(CYP19 A1) in serum were detected by ELISA. Immunohistochemistry was used to observe the expression of Bax and Bcl-2 related proteins in the apoptosis pathway of testis and epididymis. The results showed that, compared with Con group, CIA group significantly increased the rate of testicular spermatogenic tubule lesion and sperm malformation, decreased the average path speed, and no significant changes were observed in other groups. Tripterygium Glycosides Tablets at 4 times clinical equivalent dose can significantly reduce the testis index(P<0.01), each dose group can reduce the epididymis index(P<0.05). Each dose group of Tripterygium Glycosides Tablets could cause different degrees of damage to the testis and epididymis, the proportion of testicular histopathology lesions increased, the number of spermatogenic cells in the seminiferous tubules decreased, and so on. It could reduce the number of sperm, increase the rate of sperm deformity, make the parameters of sperm dynamics abnormal, and so on. Tripterygium Glycosides Tablets at 4 times dose could significantly reduce the content of serum sex hormone T and key enzyme of androgen synthesis(P<0.05 or P<0.01), but had no effect on CYP19 A1. The expression of Bax and Bcl-2 in testis and epididymis were increased by 2 and 4 times doses of Tripterygium Glycosides Tablets(P<0.05, P<0.01 or P<0.01). The results showed that 21 d administration of Tripterygium Glycosides Tablets at equal or higher doses could induce obvious toxic effect to the reproductive organs of CIA male rats, and lower the level of serum sex hormone T and the key enzyme of androgen synthesis, NOS. The mechanism of abnormal changes of Bax and Bcl-2 in Testis and epididymis is still to be elucidated.


Asunto(s)
Medicamentos Herbarios Chinos/toxicidad , Genitales Masculinos/efectos de los fármacos , Glicósidos/toxicidad , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Tripterygium/química , Animales , Artritis Experimental , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Espermatozoides/patología , Comprimidos , Testículo/patología
18.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3399-3405, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31602901

RESUMEN

Tripterygium wilfordii is widely used in the treatment of rheumatism with curative effect. However,its toxicity and adverse reactions,especially the hepatotoxicity,rank the first in the herbs induced liver injury,is the key factors hindering its clinical application. This paper reviewed the literatures related to the hepatotoxicity of T. wilfordii in recent 20 years,and summarized the characteristic of hepatotoxicity induced by T. wilfordii,the factors causing liver injury,the mechanism of toxicity,and the measures to reduce toxicity. In animal experiments,the T. wilfordii induced-hepatotoxicity in physiological state was more serious than pathological state. The T. wilfordii induced-hepatotoxicity is related to various toxic components contained in it,but alkaloids are the most toxic one.Overdose and cumulative overdose are the lead causing of hepatotoxicity induced by T. wilfordii. The theory of oxidative stress is still an important mechanism of T. wilfordii induced-hepatotoxicity,and Nrf2,as a key regulatory enzyme of oxidative stress,has become an important target for drugs to against T. wilfordii induced-hepatotoxicity. Mitochondrial autophagy and liver hypersensitivity are new mechanisms of liver injury induced by T. wilfordii. The measures such as dosage control,drug compatibility and dosage form variations can help to reduce the hepatotoxicity induced by T. wilfordii. This paper clarified the current situation and shortcomings of safety research on T. wilfordii,so as to propose new research strategies and provide ideas for rational evaluation of safety and clinical safe drug use of T. wilfordii.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos/toxicidad , Tripterygium/toxicidad , Animales
19.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3441-3447, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31602907

RESUMEN

To observe the effect of Tripterygium Glycosides Tablets on angiogenesis of rats with type Ⅱ collagen-induced arthritis( CIA) and on the tube formation of human umbilical vein endothelial cells( HUVEC) in vitro. The HUVEC were induced by 20 µg·L-1 vascular endothelial growth factor( VEGF) in vitro,and were treated with 0. 1,1,10 mg·L-1 Tripterygium Glycosides Tablets continuously for 7 hours. The numbers of branches of tube formation were measured. SD rats were immunized to establish CIA. CIA rats were treated with 9,18,36 mg·kg-1·d-1 Tripterygium Glycosides Tablets for 42 days. Histopathological examination( HE) was performed to observe the vascular morphology and vascular density in the synovial membrane of the inflamed joints. Immunohistochemistry and immunofluorescence were performed to observe the expression of platelets-endothelial cell adhesion molecule( CD31) and αsmooth muscle actin( αSMA) in synovial membrane. Immunohistochemistry and Western blot were performed to observe the expression of hypoxia-inducible factors 1α( HIF1α) and angiotensin 1( Ang1) in the synovial tissue. The results showed that the numbers of branches of tube formation of HUVEC induced by VEGF were improved,and declined significantly after treated by Tripterygium Glycosides Tablets. Compared with the normal group,the vascular density,CD31 positive expression,CD31 +/αSMA-immature and total vascular positive expression in the synovial membrane of the model group were significantly increased,and so as HIF1α and Ang1 in the synovium. Tripterygium Glycosides Tablets reduced the synovial vascular density and inhibited the positive expression of CD31,CD31+/αSMA-immature blood vessels and total vascular,but has no effect on CD31+/αSMA+mature blood vessels. Tripterygium Glycosides Tablets also inhibited the expression of HIF1α and Ang1 in synovial membrane of inflammatory joints. Our results demonstrated that Tripterygium Glycosides Tablets could inhibit the angiogenesis of synovial tissue in CIA rats and the tube formation of HUVEC,which is related to the down-regulation of HIF1α/Ang1 signal axis.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Glicósidos/farmacología , Tripterygium/química , Inhibidores de la Angiogénesis/farmacología , Angiotensina I/metabolismo , Animales , Artritis Experimental/inducido químicamente , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Membrana Sinovial/efectos de los fármacos , Comprimidos , Factor A de Crecimiento Endotelial Vascular
20.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3486-3493, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31602913

RESUMEN

The aim of this paper was to observe the toxic effect of Tripterygium Glycosides Tablets( TG) on the reproductive system of Ⅱ type collagen induced arthritis( CIA) male rats,and to explore the toxic mechanism preliminarily. Fifty SD rats were randomly divided into normal control group( Con),model group( CIA),Tripterygium Glycosides Tablets clinical equivalent dose groups of 1,2,4 times( 9,18,36 mg·kg-1),10 rats in each group,and were given by gavage once a day for 42 days after the first immunization.The organ indexes of uterine and ovarian were calculated on days 21 and 42. Histopathological and morphological changes of uterine and ovarian were observed under optical microscope. The concentration of estradiol( E2),follicle-stimulating hormone( FSH),luteinizing hormone( LH),17α-hydroxylase( CYP17 A1) and cytochrome P450 19 A1( CYP19 A1) in serum were detected by ELISA. Immunohistochemistry was used to observe the expression of Bax and Bcl-2 related proteins in the apoptosis pathway of uterus and ovary. The results showed that compared with the Con group,CIA group could reduce the number of uterine glands( P<0.05),but no significant changes were observed in other groups. Compared with the CIA group,there were no significant changes in the coefficients of uterus and ovary in the Tripterygium Glycosides Tablets groups. The number of uterine glands,total follicles in the ovary,mature follicles and corpus luteum,the distribution of blood vessels and mitochondria had a certain inhibitory trend,and also slightly increased the number of atresia follicles,but the histopathological quantitative indicators were not statistically different. Except that 2 times clinical dose of Tripterygium Glycosides Tablets could significantly reduce the content of CYP19 A1( P<0. 05) after 42 d administration,there were no significant changes in serum estrogen E2,FSH,LH and estrogen synthesis key enzymes CYP17 A1 in each administration group. Medium and high doses of Tripterygium Glycosides Tablets could increase the expression of apoptotic protein Bax in uterine and ovarian tissues( P<0. 05,P<0. 01),and all the administration groups could inhibit the expression of apoptotic inhibiting protein Bcl-2( P <0. 05,P<0. 01,P<0.001),42 d was more obvious than 21 d. In conclusion,4 times and less than 4 times Tripterygium Glycosides Tablets did not cause obvious toxicity and histopathological changes in the reproductive organs of CIA rats,but it could reduce the level of serum estrogen synthesis key enzyme CYP19 A1 and affect the content of apoptosis-related proteins Bax and Bcl-2 in uterus and ovary tissues. The relevant mechanism needs further study.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/toxicidad , Genitales Femeninos/efectos de los fármacos , Glicósidos/toxicidad , Tripterygium/química , Animales , Apoptosis , Aromatasa/metabolismo , Artritis Experimental/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Femenino , Glicósidos/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA