RESUMEN
BACKGROUND: Mild traumatic brain injury (mTBI) is a common neurological trauma that can lead to cognitive impairment. The sirtuin-1 (SIRT-1)/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) pathway has been reported to have neuroprotective effects in rats with craniocerebral injury. We evaluated potential mechanisms underlying electroacupuncture-mediated recovery of cognitive function after mTBI, focusing on the SIRT-1/PGC-1α/mitochondrial pathway. METHODS: We included forty 6-week-old male Sprague-Dawley rats in this study. Rats were randomly divided into four groups: controlled cortical impactor (CCI, n = 10), sham operation (sham, n = 10), electroacupuncture-treated CCI (CCI+EA, n = 10), and electroacupuncture-treated sham (sham+EA, n = 10) group. Randomization was performed by assigning a random number to each rat and using a random number table. The mTBI rat model was established using a controllable cortical impactor. Electroacupuncture therapy was performed on the back of rats, by inserting acupuncture needles to the specific acupoints and setting appropriate parameters for treatment. We evaluated spatial learning and memory functions with the Morris water maze test. We performed quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, adenosine triphosphate (ATP) determination, and mitochondrial respiratory chain complex I (MRCC I) determination on rat hippocampal tissue. We analyzed SIRT-1/PGC-1α expression levels and the results of mitochondrial function assays, and compared differences between groups using bilateral Student's t -tests. RESULTS: Compared with the sham group, SIRT-1/PGC-1α expression was downregulated in the hippocampus of CCI group ( P <0.01). Although this expression was upregulated following electroacupuncture, it did not reach the levels observed in the sham group ( P <0.05). Compared with the sham group, MRCC I and ATP levels in the CCI group were significantly reduced, and increased after electroacupuncture ( P <0.01). In the Morris water maze, electroacupuncture reduced the incubation period of rats and increased average speed and number of crossing platforms ( P <0.05). CONCLUSION: Electroacupuncture may improve cognitive function in the mTBI rat model by regulating the SIRT-1/PGC-1α/mitochondrial pathway.
Asunto(s)
Conmoción Encefálica , Electroacupuntura , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Electroacupuntura/métodos , Sirtuina 1/genética , Cognición , Mitocondrias , Adenosina TrifosfatoRESUMEN
BACKGROUND: The neuropathic pain (NPP) after brachial plexus avulsion (BPA) is common and difficult to cure, and thalamus and postcentral gyrus have been accepted to be the key nodes of mechanisms and pathways for pain. However, little attention has been paid on the thalamus-postcentral gyrus functional connectivity changes in NP patients after BPA. METHODS: Eighteen patients with NPP after BPA and twenty age and gender matched healthy controls were enrolled and underwent resting-state functional MRI (rs-fMRI) scans in this study. The Pearson's r-value of functional connection (bilateral thalamus and postcentral gyrus as regions of interest) was generated and examined using two sample t-test. The linear regression analysis was used to select possible related factors, and multiple linear regression of the possible predictors was used to identify the variables that significantly predicted Visual Analogue Score (VAS). RESULTS: The standardized Pearson r-values of the left thalamus-right thalamus, left thalamus-left postcentral gyrus, left thalamus-right postcentral gyrus, right thalamus-left postcentral gyrus and right thalamus-right postcentral gyrus in the control group were 0.759 ± 0.242, 0.358 ± 0.297, 0.383 ± 0.270, 0.317 ± 0.295 and 0.333 ± 0.304, respectively. And the corresponding standardized Pearson r-values in patients group were 0.510 ± 0.224,0.305 ± 0.212,0.281 ± 0.225,0.333 ± 0.193 and 0.333 ± 0.210, respectively. The functional connectivity strength of the left thalamus-right thalamus in control group was significantly higher than that in the patients group (P < 0.05). Linear regression analysis showed that the functional connectivity strength of the left thalamus-right thalamus was negatively correlated with the patients' VAS score (P < 0.05). CONCLUSIONS: NPP patients after BPA had a significant pain-related bilateral thalamus functional connection reorganization, with the purpose to limit the pain signal inputs within the unilateral cerebral hemisphere.