Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem Toxicol ; 182: 114180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37967787

RESUMEN

The effect of heavy metal cadmium (Cd) on testicular function is recognized. However, the mechanism involved is not well-established. In the present study, we analyzed the testicular transcriptomic changes induced by acute Cd exposure of adult rats with and without supplementation of antioxidants selenium (Se) and/or coenzyme Q10 (CoQ). Cd significantly decreased serum testosterone and two steroidogenic proteins SCARB1 and STAR. RNA-Seq analyses of testicular RNAs revealed specific activation of oxidative stress-, inflammation-, MAPK- and NF-κB-related signaling molecules. In addition, Cd treatment down-regulated gene for I, III and IV complexes of mitochondrial electron transport chain and up-regulated genes for NADPH-oxidase, major cascade in ROS production. The decrease in steroidogenesis and increase in inflammation may result from oxidative stress since supplementation of Se and CoQ, but not with either alone, almost completely prevented these changes, including overall alterations in transcriptome. Cd exposure induced total of 1192 differentially expressed genes (DEGs), which was reduced to 29 without considering confounding factors associated with Se/CoQ, a 97.6% protection rate. In conclusion, Cd exposure inhibited Leydig cell steroidogenesis by down-regulating SCARB1 and STAR through increasing oxidative stress and inflammation, but Se plus CoQ synergistically prevented all the changes induced by the Cd exposure.


Asunto(s)
Cadmio , Selenio , Masculino , Ratas , Animales , Cadmio/toxicidad , Selenito de Sodio/farmacología , Transcriptoma , Antioxidantes/farmacología , Selenio/farmacología , Estrés Oxidativo , Inflamación , Perfilación de la Expresión Génica
2.
J Pharm Biomed Anal ; 223: 115157, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36379101

RESUMEN

Qi-Lin pill (QLP) is an effective traditional Chinese medicine prescription (TCMP) that has been used for the treatment of the oligoasthenozoospermia in China. Recently, some articles described the pharmacological effects of QLP and multiple ingredients in QLP contribute to its effects. However, the pharmacokinetic and target tissue distribution data of QLP are still unknown. In the present study, according to the Bioanalytical Method Validation Guidance of FDA, a sensitive and selective UPLC-MS/MS method was developed and validated for simultaneous determination of multiple constituents in rat plasma and testicular tissue, including morusimic acid A, codonopyrridium B, magnoflorine, emodin, 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), ecliptasaponin A, paeoniflorin, albiflorin, gallic acid, danshensu, salvianolic acid A, catechin, isosinensetin, nobiletin, formononetin, calycosin, icariside II, icariin and epimedin C. For 19 analytes, the LLOQs reached 0.01-4 ng/mL. And all calibration curves showed favorable linearity (r ≥ 0.9903) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.92 %, and the accuracies (as relative error) were in the range of - 6.44 % to 6.22 %. Extraction recoveries and matrix effects of analytes and IS were acceptable. All analytes were stable during the assay and storage in plasma samples. The method was successfully applied for the pharmacokinetics and testis distribution of multiple chemical constituents in QLP after a single oral dose. As a result, high exposure of danshensu, gallic acid, paeoniflorin and albiflorin were observed in rat plasma and testicular tissue. Among the flavonoids, isosinensetin and nobiletin had high exposure in testicular tissue. Moreover, alleviation of progesterone reduction was evaluated in H2O2-induced R2C leydig cells, and danshensu, gallic acid, paeoniflorin, albiflorin and nobiletin showed potent activity. Therefore, these five components were considered to be the effective components of QLP due to their relatively high exposure in vivo and biological activity. This finding also provided relevant information on action mechanism of QLP in the treatment of oligoasthenozoospermia.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Animales , Masculino , Ratas , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/farmacocinética , Ácido Gálico , Peróxido de Hidrógeno , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Testículo , Distribución Tisular
3.
Fish Shellfish Immunol ; 97: 509-514, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31877360

RESUMEN

In this study, the effect of Lycium barbarum polysaccharides (LBP) on immunological parameters, apoptosis, and growth performance of Nile tilapia (Oreochromis niloticus) was investigated. Dietary supplementation with LBP significantly increased complement 3 (C3) activity and promoted interleukin IL-1ß gene expression in spleen tissue, significantly reduced apoptosis in spleen tissue, increased the specific growth rate (SGR), relative length gain (LG), and relative weight gain (WG) of Nile tilapia. However, dietary supplementation with LBP did not have a significant effect on serum alkaline phosphatase (AKP), malondialdehyde (MDA), and superoxide dismutase (SOD), blood constituents, apoptosis, or gene expression of IL-1ß in liver tissue. Overall, the results showed that dietary supplementation with LBP increased the nonspecific immunity of Nile tilapia and reduced the apoptosis rate to promote growth and development. Thus, LBP has potential for use as a new immunostimulant in aquaculture.


Asunto(s)
Apoptosis/efectos de los fármacos , Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Suplementos Dietéticos , Medicamentos Herbarios Chinos/administración & dosificación , Alimentación Animal , Animales , Acuicultura , Complemento C3/inmunología , Enfermedades de los Peces/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología
4.
Artículo en Inglés | MEDLINE | ID: mdl-30420837

RESUMEN

Vitamin A (retinol) is important for multiple functions in mammals. In testis, the role of vitamin A in the regulation of testicular functions is clearly involved in rodents. It is essential for sperm production. Vitamin A deficiency adversely affects testosterone secretion. Adult Leydig cells are responsible for testosterone production in male. The role of vitamin A in regulating the differentiation of Leydig cells is still unknown. In this study, we explored the roles and underlying mechanisms of vitamin A in Leydig cell differentiation. We found that vitamin A could regulate the Leydig cells differentiation. Leydig cell differentiation is adversely affected in mice maintained on a vitamin A-free diet. This effect is mediated by alcohol dehydrogenase 1 (ADH1). ADH1 could increase retinoic acid (RA) synthesis, then RA facilitates Leydig cell differentiation by activating the steroidogenic factor 1 gene (Nr5a1) promoter activity, which consequently promotes Leydig cell specific gene expression, resulting in progenitor Leydig cells differentiation into functional Leydig cells. This is the first study connecting a metabolic enzyme of retinol (ADH1) to the the regulation of Leydig cell differentiation, which will provide experimental evidence for the development of therapeutics to promote Leydig regeneration through the administration of a RA signaling regulator or a vitamin A supplement.

5.
EBioMedicine ; 35: 295-306, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30131307

RESUMEN

BACKGROUND: Nerve growth factor (NGF) plays essential roles in regulating the development and maintenance of central sympathetic and sensory neurons. However, the effects of NGF on hypogonadism remain unexplored. METHODS: To assess the effects of NGF on hypogonadism, we established a convenient and noninvasive way to deliver NGF to the hypothalamus by spraying liposome-encapsulated NGF into the nasal cavity. The ten-month-old aging male senescence accelerate mouse P8 (SAMP8) mice with age-related hypogonadotrophic hypogonadism were used to study the role of NGF in hypogonadism. The age-matched accelerated senescence-resistant mouse R1 (SAMR1) served as a control. The ten-month-old SAMP8 mice were treated with NGF twice per week for 12 weeks. Sexual hormones, sexual behaviors, and fertility were analyzed after NGF treatment. And the mechanisms of NGF in sex hormones sexual function were also studied. FINDINGS: NGF could enhance the sexual function, improve the quality of the sperm, and restore the fertility of aging male SAMP8 mice with age-related hypogonadism by activating gonadotropin-releasing hormone (GnRH) neuron and regulating secretion of GnRH. And NGF regulated the GnRH release through the PKC/p-ERK1/2/p-CREB signal pathway. INTERPRETATION: These results suggest that NGF treatment could alleviate various age-related hypogonadism symptoms in male SAMP8 and may be usefulness for age-related hypogonadotrophic hypogonadism and its related subfertility. FUND: National Natural Science Foundation of China, Natural Science Foundation of Guangdong Province, the Science and Technology Plan Project of Guangzhou, Wenzhou Science & Technology Bureau, Guangdong Province Pearl River Scholar Fund, Guangdong province science and technology innovation leading Scholar Fund.


Asunto(s)
Envejecimiento/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipogonadismo/tratamiento farmacológico , Hipogonadismo/metabolismo , Factor de Crecimiento Nervioso/administración & dosificación , Factor de Crecimiento Nervioso/uso terapéutico , Testosterona/metabolismo , Regulación hacia Arriba , Administración Intranasal , Animales , Femenino , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones Endogámicos BALB C , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
6.
Mol Med Rep ; 12(2): 2348-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25873199

RESUMEN

Rhizoma Atractylodes macrocephala, Radix Isatidis, Coptis chinensis and Flos Genkwa are common herbal remedies used by pregnant woman in China. In this study, their potential embryotoxicity was assessed using the embryonic stem cell test (EST) and a prediction model. The potential embryotoxicity of the herbs was based on three endpoints: the concentrations of the compounds that inhibited the proliferation of 50% of embryonic stem cells (ESCs) (IC50ES), the concentrations that inhibited 50% of 3T3 cells (IC503T3), and the concentrations that inhibited the differentiation of 50% of ESCs (ID50ES). The results revealed that Rhizoma Atractylodes macrocephala and Radix Isatidis are non-embryotoxic compounds. Coptis chinensis extracts appeared to demonstrated weak embryotoxicity, and Flos Genkwa exhibited strong embryotoxicity. These results may be useful in guiding the clinical use of these herbs and in expanding the application of the EST to the field of traditional Chinese medicine.


Asunto(s)
Atractylodes/química , Coptis/química , Daphne/química , Medicamentos Herbarios Chinos/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células 3T3 , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Concentración 50 Inhibidora , Ratones , Extractos Vegetales/química , Embarazo , Rizoma/química , Pruebas de Toxicidad
7.
J Pharmacol Exp Ther ; 329(2): 469-78, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19208897

RESUMEN

The present study aimed to produce and pathophysiologically evaluate the metallothionein (MT) fusion protein. A recombinant plasmid containing DNA segment coding the pET-glutathione transferase (GST)-small ubiquitin-related modifier (SUMO)-MT fusion protein was inserted into Escherichia coli for expression. The expression level of the fusion protein was very high, reaching to 38.4% of the total supernatant proteins from the organism. Subsequent filtration through glutathione Sepharose 4B gel and Sephadex G-25 yielded an MT fusion protein with purity more than 95%. When exposed to metals, E. coli containing the GST-SUMO-MT fusion protein showed an increased accumulation of Cd(2+), Zn(2+), or Cu(2+) at approximately 4.2, 4.0, or 1.6 times higher, respectively, than those containing the control protein. Administration of GST-SUMO-MT to mice that were also treated with D-galactose to induce neuronal and hepatic damage showed a significant improvement of animal learning and memory capacity, which was depressed in mice treated by D-galactose alone. Administration of MT fusion protein also prevented D-galactose-increased malondialdehyde contents and histopathological changes in the brain and liver. Furthermore, supplement of the fusion protein significantly prevented D-galactose-increased nitric oxide contents and -decreased superoxide dismutase activity in the brain, liver, and serum. The fusion protein was also able to prevent ionizing radiation-induced DNA damage of the mouse thymus. The present study indicates that GST-SUMO-MT has a normal metal binding feature and also significantly protects the multiple tissues against oxidative damage in vivo caused by chronic exposure to D-galactose and by ionizing radiation. Therefore, GST-SUMO-MT may be a potential candidate to be developed for the clinical application.


Asunto(s)
Glutatión Transferasa/biosíntesis , Hígado/efectos de los fármacos , Metalotioneína/biosíntesis , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/biosíntesis , Animales , Antioxidantes/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Escherichia coli/genética , Femenino , Galactosa , Humanos , Peróxidos Lipídicos/metabolismo , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA