Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(33): 50617-50631, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35235116

RESUMEN

Solar energy will assist in lowering the price of fossil fuels. The current research is based on a study of a solar dryer with thermal storage that uses water and waste engine oil as the working medium at flow rates of 0.035, 0.045, and 0.065 l/s. A parabolic trough collector was used to collect heat, which was then stored in a thermal energy storage device. The system consisted of rectangular boxes containing stearic acid phase change materials with 0.3vol % Al2O3 nanofluids, which stored heat for the waste engine oil medium is 0.33 times that of the water medium at a rate of flow of 0.035 l/s which was also higher than the flow rates of 0.045 and 0.065 l/s. The parabolic trough reflected solar radiation to the receiver, and the heat was collected in the storage medium before being forced into circulation and transferred to the solar dryer. At a flow rate of 0.035 l/s, the energy output of the solar dryer's waste engine oil medium and water was determined to be roughly 12.4, 14, and 15.1, and 9.8, 10.5, and 11.5 times lower than the crops output of groundnut, ginger, and turmeric, respectively. The energy output in the storage tank and the drying of groundnut, ginger, and turmeric crops with water and waste engine oil medium at varied flow rates of 0.035, 0.045, and 0.065 l/s were studied. Finally, depending on the findings of the tests, this research could be useful in agriculture, notably in the drying of vegetables.


Asunto(s)
Calor , Energía Solar , Óxido de Aluminio , Luz Solar , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA