Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 12(12): 346, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386567

RESUMEN

Fungal laccases are versatile biocatalyst and occupy a prominent place in various industrial applications due to its broad substrate specificity. The simplest method to enhance the laccase production is by usage of cheap substrates in the fermentation processes incorporating modeling approaches for optimization. Integrated biorefinery concept is receiving wide popularity by making use of various products from microalgal biomass. The research aimed to identify the potential of deoiled microalgal biomass (DMB), a waste product from algal biorefinery as a nutrient supplement to enhance laccase production in Pleurotus floridanus by submerged fermentation. The maximum production was obtained in the presence of DMB as an additional nutrient supplement and copper sulfate as an inducer. The predictive capabilities of the two methodologies Response Surface Methodology (RSM) and hybrid Particle swarm optimization (PSO)-based Artificial Neural Network (ANN) were compared and validated. The results showed that ANN coupled with PSO predicted with more accuracy with an R 2 value of 0.99 than the RSM model with an R 2 value of 0.97. The optimized condition as predicted by superior model hybrid PSO-based ANN was glucose (3.51%), DMB (0.545%), pH (4.9), temperature (24.68 â„ƒ) and CuSO4 (1.35 mM). The experimental laccase activity was 80.45 ± 0.132 U/mL which was 1.3 fold higher than unoptimized condition. This study promotes the usage of DMB as a novel supplement for the improved production of Pleurotus floridanus laccase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03404-y.

2.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 439-450, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35818224

RESUMEN

Laccase producing fungus Pleurotus floridanus was isolated from Siruvani forest, Tamil Nadu, India. The potential of P. floridanus to produce laccase by using various lignocellulosic substrates was screened under submerged fermentation. Laccase production in the presence of lignocellulosic substrates such as rice, wheat and maize bran as a sole source of carbon as well as an additional supplement was examined. Laccase activity of P. floridanus using varied substrates was observed in the order of rice bran > wheat bran > maize bran. The isolate showed maximum laccase activity of 13.29±0.01 U/mL using rice bran as a carbon source within 11 days. This was 18 fold higher than the control media that lacks lignocellulosic substrates. The diclofenac tolerance was assessed in solid media at various concentrations and the results showed that the mycelia growth is not significantly affected by the drug. Finally, the laccase mediated degradation of diclofenac at a concentration of 10 mg/L showed 98% degradation in 2 h. The phytotoxicity of the crude laccase treated diclofenac was lower than the untreated diclofenac. In conclusion, findings suggested direct application of crude laccase produced from P. floridanus using agro-residues as ideal substrate for environmental applications.


Asunto(s)
Lacasa , Pleurotus , Biotransformación , Carbono , Diclofenaco/toxicidad , India , Lacasa/metabolismo , Pleurotus/metabolismo
3.
Int J Biol Macromol ; 201: 539-556, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973987

RESUMEN

The unique physiochemical properties and the porous network architecture of hydrogel seek the attention to be explored in broad range of fields. In the last decade, numerous studies on the development of enzymatically cross-linked hydrogels have been elucidated. Implementing enzyme based cross-linking for fabrication of biomaterials over other cross-linking methods harbor various advantages, especially hydrogels designed using laccase exhibits mild reaction environment, high cross-linking efficiency and less toxicity. To our knowledge this is the first report reviewing the formulation of laccase mediated cross-linking for hydrogel preparation. Here, laccase catalyzed synthesis of hydrogel using polysaccharide viz. arabinoxylan, sugar beet pectin, galactomannan, chitosan etc. and proteins namely soy protein, gelatin, silk fibroin were discussed on highlighting their mechanical properties and its possible field of application. We have summarized the role of phenolic acids in laccase mediated cross-linking particularly ferulic acid which is a component of lignocellulose, serving cell rigidity via cross-linkage. The review also discusses on various biomedical applications such as controlled protein release, tissue engineering, and wound healing. It is anticipated that this review will give a detailed information on different laccase mediated reaction strategies that can be applied for the synthesis of various new biomaterials with tailor made properties.


Asunto(s)
Quitosano , Fibroínas , Quitosano/química , Ácidos Cumáricos , Fibroínas/química , Hidrogeles/química , Lacasa/química , Oxidación-Reducción , Pectinas/química , Seda/metabolismo , Proteínas de Soja/metabolismo , Xilanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA