Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Chem ; 64(8): 5001-5017, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33835812

RESUMEN

A discovery program targeting respiratory syncytial virus (RSV) identified C-nucleoside 4 (RSV A2 EC50 = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (1, GS-5734) that is >30-fold more potent than 4 against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, 1-NTP, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of 1-NTP following molar normalized IV dosing of 1 compared to that of 4. A once daily 10 mg/kg IV administration of 1 in an African Green monkey RSV model demonstrated a >2-log10 reduction in the peak lung viral load. These early data following the discovery of 1 supported its potential as a novel treatment for RSV prior to its development for Ebola and approval for COVID-19 treatment.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Profármacos/farmacología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Antivirales/química , Antivirales/farmacocinética , Células CACO-2 , Células Cultivadas , Chlorocebus aethiops , Modelos Animales de Enfermedad , Perros , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/virología , Humanos , Macaca fascicularis , Masculino , Profármacos/química , Profármacos/farmacocinética , Ratas Sprague-Dawley , Infecciones por Virus Sincitial Respiratorio/virología , Relación Estructura-Actividad , Distribución Tisular , Tubercidina/análogos & derivados , Tubercidina/química , Carga Viral
2.
Drug Metab Dispos ; 48(11): 1199-1209, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32892154

RESUMEN

The eastern woodchuck (Marmota monax) is a hibernating species extensively used as an in vivo efficacy model for chronic human hepatitis B virus infection. Under laboratory conditions, woodchucks develop a pseudohibernation condition; thus, the pharmacokinetics (PK) of small-molecule therapeutics may be affected by the seasonal change. The seasonal PK of four probe compounds were characterized over 12 months in seven male and nine female laboratory-maintained woodchucks. These compounds were selected to study changes in oxidative metabolism [antipyrine (AP)], glucuronidation [raltegravir (RTG)], renal clearance [lamivudine (3TC)], and hepatic function [indocyanine green (ICG)]. Seasonal changes in physiologic parameters and PK were determined. Seasonal body weight increases were ≥30%. Seasonal changes in body temperature and heart rate were <10%. The mean AP exposure remained unchanged from April to August 2017, followed by a significant increase (≥1.0-fold) from August to December and subsequent decrease to baseline at the end of study. A similar trend was observed in RTG and 3TC exposures. The ICG exposure remained unchanged. No significant sex difference in PK was observed, although female woodchucks appeared to be less susceptible to seasonal PK and body weight changes. Significant seasonal PK changes for AP, RTG, and 3TC indicate decreases in oxidative metabolism, phase II glucuronidation, and renal clearance during pseudohibernation. The lack of seasonal change in ICG exposure suggests there are no significant changes in hepatic function. This information can be used to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK. SIGNIFICANCE STATEMENT: Woodchuck is a hibernating species and is commonly used as a nonclinical model of hepatitis B infection. Investigation of seasonal PK changes is perhaps of greater interest to pharmaceutical industry scientists, who use the woodchuck model to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK and/or toxicity. This information is also valuable to drug metabolism and veterinary scientists in understanding woodchuck's seasonal metabolism and behavior under the pseudohibernation condition.


Asunto(s)
Antivirales/farmacocinética , Hepatitis B Crónica/tratamiento farmacológico , Hibernación/fisiología , Marmota/fisiología , Tasa de Depuración Metabólica/fisiología , Animales , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Masculino , Estaciones del Año
3.
Anal Chem ; 83(24): 9516-23, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22077671

RESUMEN

A selective and sensitive approach, called extraction of product ion (XoPI) method, was developed for the detection of l-glutathione (GSH)-trapped reactive metabolites employing an Orbitrap high resolution mass spectrometer. Fragmentation of GSH conjugates in the negative ion mode leads to a product ion, deprotonated γ-glutamyl-dehydroalanyl-glycine (m/z 272.0888). As a means of utilizing this property, negative ion high resolution MS data were collected from in vitro incubations by monitoring ions from m/z 269.5 to 274.5 under in-source collision-induced dissociation. Extraction of product ions at m/z 272.0888 ± 5 ppm from this data resulted in a chromatogram exhibiting deprotonated γ-glutamyl-dehydroalanyl-glycine as the major peaks with no or very few interferences. Therefore, peaks in this extracted product ion chromatogram potentially came from GSH-trapped reactive metabolites. The GSH conjugate parent ions were then confirmed in the corresponding full scan MS data, and their structures were identified from their MS(2) fragmentation patterns. The effectiveness of the approach was assessed with four model compounds, amodiaquine, clozapine, diclofenac, and fipexide, all well-known to form GSH-trapped reactive metabolites, following incubation in human liver microsomes supplemented with ß-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) and GSH. The results from XoPI method were compared to two other commonly employed liquid chromatography-mass spectrometry (LC-MS) methods: precursor ion scan method and mass defect filter method. Overall, the XoPI method was more selective and sensitive in detecting the GSH conjugates. Many GSH conjugates previously not reported were detected and characterized in this study.


Asunto(s)
Cromatografía Líquida de Alta Presión , Glutatión/metabolismo , Espectrometría de Masas , Amodiaquina/química , Amodiaquina/metabolismo , Clozapina/química , Clozapina/metabolismo , Diclofenaco/química , Diclofenaco/metabolismo , Humanos , Iones/química , Microsomas Hepáticos/metabolismo , NADP/metabolismo , Piperazinas/química , Piperazinas/metabolismo
4.
Chem Res Toxicol ; 24(5): 677-86, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21395287

RESUMEN

Compounds 1 (N1-(3-ethynylphenyl)-6-methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl) isoquinoline-1,5-diamine) and 2 (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine; Erlotinib/Tarceva) are kinase inhibitors that contain a terminal phenyl acetylene moiety. When incubated in the presence of P450 and NADPH, the anticipated phenyl acetic acid metabolite was formed. When 10 mM of N-acetyl-l-cysteine was added to the incubation mixtures, the phenyl acetic acid product was reduced and at 25 mM or higher concentration of NAC, formation of the phenyl acetic acid was abolished. Instead, the phenyl acetylene moiety lost a carbon and formed a benzaldehyde product. Other oxidation products incorporating one or more equivalents of NAC were also observed. The identities of the metabolites were characterized by MS and NMR. Addition of deferoxamine or ascorbic acid diminished the formation of the NAC influenced products. Similar products were also observed when 1 or 2 were incubated in P450 reactions supplemented with GSH, in Fenton reactions supplemented with NAC or GSH, and in peroxidase reactions supplemented with NAC. We propose the thiols act as a pro-oxidant readily undergoing a one-electron oxidation to form thiyl radicals which in turn initiates the formation of other peroxy radicals that drive the reaction to the observed products. These in vitro findings suggest that one-electron oxidation of thiols may promote the cooxidation of xenobiotic substrates.


Asunto(s)
Acetilcisteína/metabolismo , Acetileno/metabolismo , Benzaldehídos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión/metabolismo , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Bovinos , Quelantes/farmacología , Deferoxamina/farmacología , Perros , Humanos , Masculino , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
5.
Drug Metab Dispos ; 30(5): 505-12, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11950779

RESUMEN

The active forms of all marketed hydroxymethylglutaryl (HMG)-CoA reductase inhibitors share a common dihydroxy heptanoic or heptenoic acid side chain. In this study, we present evidence for the formation of acyl glucuronide conjugates of the hydroxy acid forms of simvastatin (SVA), atorvastatin (AVA), and cerivastatin (CVA) in rat, dog, and human liver preparations in vitro and for the excretion of the acyl glucuronide of SVA in dog bile and urine. Upon incubation of each statin (SVA, CVA or AVA) with liver microsomal preparations supplemented with UDP-glucuronic acid, two major products were detected. Based on analysis by high-pressure liquid chromatography, UV spectroscopy, and/or liquid chromatography (LC)-mass spectrometry analysis, these metabolites were identified as a glucuronide conjugate of the hydroxy acid form of the statin and the corresponding delta-lactone. By means of an LC-NMR technique, the glucuronide structure was established to be a 1-O-acyl-beta-D-glucuronide conjugate of the statin acid. The formation of statin glucuronide and statin lactone in human liver microsomes exhibited modest intersubject variability (3- to 6-fold; n = 10). Studies with expressed UDP glucuronosyltransferases (UGTs) revealed that both UGT1A1 and UGT1A3 were capable of forming the glucuronide conjugates and the corresponding lactones for all three statins. Kinetic studies of statin glucuronidation and lactonization in liver microsomes revealed marked species differences in intrinsic clearance (CL(int)) values for SVA (but not for AVA or CVA), with the highest CL(int) observed in dogs, followed by rats and humans. Of the statins studied, SVA underwent glucuronidation and lactonization in human liver microsomes, with the lowest CL(int) (0.4 microl/min/mg of protein for SVA versus approximately 3 microl/min/mg of protein for AVA and CVA). Consistent with the present in vitro findings, substantial levels of the glucuronide conjugate (approximately 20% of dose) and the lactone form of SVA [simvastatin (SV); approximately 10% of dose] were detected in bile following i.v. administration of [(14)C]SVA to dogs. The acyl glucuronide conjugate of SVA, upon isolation from an in vitro incubation, underwent spontaneous cyclization to SV. Since the rate of this lactonization was high under conditions of physiological pH, the present results suggest that the statin lactones detected previously in bile and/or plasma following administration of SVA to animals or of AVA or CVA to animals and humans, might originate, at least in part, from the corresponding acyl glucuronide conjugates. Thus, acyl glucuronide formation, which seems to be a common metabolic pathway for the hydroxy acid forms of statins, may play an important, albeit previously unrecognized, role in the conversion of active HMG-CoA reductase inhibitors to their latent delta-lactone forms.


Asunto(s)
Glucurónidos/metabolismo , Ácidos Heptanoicos/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Lactonas/metabolismo , Piridinas/metabolismo , Pirroles/metabolismo , Simvastatina/metabolismo , Animales , Atorvastatina , Bilis/química , Perros , Glucurónidos/orina , Glucuronosiltransferasa/metabolismo , Ácidos Heptanoicos/farmacocinética , Ácidos Heptanoicos/orina , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/orina , Lactonas/farmacocinética , Lactonas/orina , Espectroscopía de Resonancia Magnética , Microsomas Hepáticos/metabolismo , Isoformas de Proteínas , Piridinas/farmacocinética , Piridinas/orina , Pirroles/farmacocinética , Pirroles/orina , Ratas , Proteínas Recombinantes/metabolismo , Simvastatina/farmacocinética , Simvastatina/orina , Uridina Difosfato Ácido Glucurónico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA