Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(34): E8096-E8103, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082386

RESUMEN

A large part of chemodiversity of plant triterpenes is due to the modification of their side chains. Reduction or isomerization of double bonds in the side chains is often an important step for the diversification of triterpenes, although the enzymes involved are not fully understood. Withanolides are a large group of structurally diverse C28 steroidal lactones derived from 24-methylenecholesterol. These compounds are found in the Indian medicinal plant Withania somnifera, also known as ashwagandha, and other members of the Solanaceae. The pathway for withanolide biosynthesis is unknown, preventing sustainable production via white biotechnology and downstream pharmaceutical usages. In the present study, based on genome and transcriptome data we have identified a key enzyme in the biosynthesis of withanolides: a DWF1 paralog encoding a sterol Δ24-isomerase (24ISO). 24ISO originated from DWF1 after two subsequent duplication events in Solanoideae plants. Withanolides and 24ISO appear only in the medicinal plants in the Solanoideae, not in crop plants such as potato and tomato, indicating negative selection during domestication. 24ISO is a unique isomerase enzyme evolved from a reductase and as such has maintained the FAD-binding oxidoreductase structure and requirement for NADPH. Using phylogenetic, metabolomic, and gene expression analysis in combination with heterologous expression and virus-induced gene silencing, we showed that 24ISO catalyzes the conversion of 24-methylenecholesterol to 24-methyldesmosterol. We propose that this catalytic step is the committing step in withanolide biosynthesis, opening up elucidation of the whole pathway and future larger-scale sustainable production of withanolides and related compounds with pharmacological properties.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Filogenia , Proteínas de Plantas , Esteroide Isomerasas , Withania , Witanólidos/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Esteroide Isomerasas/biosíntesis , Esteroide Isomerasas/genética , Withania/enzimología , Withania/genética
2.
Planta ; 247(4): 779-790, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29214446

RESUMEN

MAIN CONCLUSION: UGT79B31 encodes flavonol 3- O -glycoside: 2″- O -glucosyltransferase, an enzyme responsible for the terminal modification of pollen-specific flavonols in Petunia hybrida. Flavonoids are known to be involved in pollen fertility in petunia (P. hybrida) and maize (Zea mays). As a first step toward elucidating the role of flavonoids in pollen, we have identified a glycosyltransferase that is responsible for the terminal modification of petunia pollen-specific flavonoids. An in silico search of the petunia transcriptome database revealed four candidate UDP-glycosyltransferase (UGT) genes. UGT79B31 was selected for further analyses based on a correlation between the accumulation pattern of flavonol glycosides in various tissues and organs and the expression profiles of the candidate genes. Arabidopsis ugt79b6 mutants that lacked kaempferol/quercetin 3-O-glucosyl(1 â†’ 2)glucosides, were complemented by transformation with UGT79B31 cDNA under the control of Arabidopsis UGT79B6 promoter, showing that UGT79B31 functions as a flavonol 3-O-glucoside: 2″-O-glucosyltransferase in planta. Recombinant UGT79B31 protein can convert kaempferol 3-O-galactoside/glucoside to kaempferol 3-O-glucosyl(1 â†’ 2)galactoside/glucoside. UGT79B31 prefers flavonol 3-O-galactosides to the 3-O-glucosides and rarely accepted the 3-O-diglycosides as sugar acceptors. UDP-glucose was the preferred sugar donor for UGT79B31. These results indicated that UGT79B31 encodes a flavonoid 3-O-glycoside: 2″-O-glucosyltransferase. Transient expression of UGT79B31 fused to green fluorescent protein (GFP) in Nicotiana benthamiana showed that UGT79B31 protein was localized in the cytosol.


Asunto(s)
Flavonoides/biosíntesis , Glucosiltransferasas/metabolismo , Petunia/metabolismo , Polen/metabolismo , Resinas de Plantas/metabolismo , Clonación Molecular , Glucosiltransferasas/genética , Immunoblotting , Petunia/enzimología , Petunia/genética , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares/metabolismo
3.
Plant J ; 79(5): 769-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24916675

RESUMEN

Flavonol 3-O-diglucosides with a 1→2 inter-glycosidic linkage are representative pollen-specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild-type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3-O-ß-d-glucopyranosyl-(1→2)-ß-d-glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild-type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP-glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen-specific flavonol structure. Kaempferol and quercetin 3-O-glucosyl-(1→2)-glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild-type plants. Recombinant UGT79B6 protein converted kaempferol 3-O-glucoside to kaempferol 3-O-glucosyl-(1→2)-glucoside. UGT79B6 recognized 3-O-glucosylated/galactosylated anthocyanins/flavonols but not 3,5- or 3,7-diglycosylated flavonoids, and prefers UDP-glucose, indicating that UGT79B6 encodes flavonoid 3-O-glucoside:2″-O-glucosyltransferase. A UGT79B6-GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/metabolismo , Arabidopsis/química , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/química , Flores/citología , Flores/enzimología , Flores/genética , Expresión Génica , Genes Reporteros , Glucosiltransferasas/genética , Quempferoles/metabolismo , Monosacáridos/metabolismo , Mutación , Especificidad de Órganos , Filogenia , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polen/química , Polen/citología , Polen/enzimología , Polen/genética , Quercetina/metabolismo , Proteínas Recombinantes de Fusión , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA