Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769273

RESUMEN

Glutathione (GSH) is necessary for maintaining physiological antioxidant function, which is responsible for maintaining free radicals derived from reactive oxygen species at low levels and is associated with improved cognitive performance after brain injury. GSH is produced by the linkage of tripeptides that consist of glutamic acid, cysteine, and glycine. The adequate supplementation of GSH has neuroprotective effects in several brain injuries such as cerebral ischemia, hypoglycemia, and traumatic brain injury. Brain injuries produce an excess of reactive oxygen species through complex biochemical cascades, which exacerbates primary neuronal damage. GSH concentrations are known to be closely correlated with the activities of certain genes such as excitatory amino acid carrier 1 (EAAC1), glutamate transporter-associated protein 3-18 (Gtrap3-18), and zinc transporter 3 (ZnT3). Following brain-injury-induced oxidative stress, EAAC1 function is negatively impacted, which then reduces cysteine absorption and impairs neuronal GSH synthesis. In these circumstances, vesicular zinc is also released into the synaptic cleft and then translocated into postsynaptic neurons. The excessive influx of zinc inhibits glutathione reductase, which inhibits GSH's antioxidant functions in neurons, resulting in neuronal damage and ultimately in the impairment of cognitive function. Therefore, in this review, we explore the overall relationship between zinc and GSH in terms of oxidative stress and neuronal cell death. Furthermore, we seek to understand how the modulation of zinc can rescue brain-insult-induced neuronal death after ischemia, hypoglycemia, and traumatic brain injury.


Asunto(s)
Antioxidantes , Lesiones Traumáticas del Encéfalo , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cisteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zinc/farmacología , Zinc/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/metabolismo , Estrés Oxidativo , Neuronas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular
2.
Mol Neurobiol ; 59(5): 3206-3217, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35293604

RESUMEN

Zinc is an essential micronutrient required for proper function during neuronal development because it can modulate neuronal function and structure. A fully functional description of zinc in axonal processing in the central nervous system remains elusive. Here, we define the role of intracellular zinc in axon formation and elongation, involving the mammalian target of rapamycin complex 1 (mTORC1). To investigate the involvement of zinc in axon growth, we performed an ex vivo culture of mouse hippocampal neurons and administrated ZnCl2 as a media supplement. At 2 days in vitro, the administration of zinc induced the formation of multiple and elongated axons in the ex vivo culture system. A similar outcome was witnessed in callosal projection neurons in a developing mouse brain. Treatment with extracellular zinc activated the mTORC1 signaling pathway in mouse hippocampal neuronal cultures. The zinc-dependent enhancement of neuronal processing was inhibited either by the deactivation of mTORC1 with RAPTOR shRNA or by mTOR-insensitive 4EBP1 mutants. Additionally, zinc-dependent mTORC1 activation enhanced the axonal translation of TC10 and Par3 may be responsible for axonal growth. We identified a promising role of zinc in controlling axonogenesis in the developing brain, which, in turn, may indicate a novel structural role of zinc in the cytoskeleton and developing neurons.


Asunto(s)
Axones , Zinc , Animales , Axones/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neuronas/metabolismo , Transducción de Señal , Zinc/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884886

RESUMEN

Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)-estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα-PGC-1α-ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα-PGC-1α-ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Mitocondrias/metabolismo , Panax , Proteínas Quinasas Activadas por AMP/genética , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Citocromos c/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores de Estrógenos/genética , Receptor Relacionado con Estrógeno ERRalfa
4.
Stem Cells ; 38(8): 994-1006, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32346941

RESUMEN

The subgranular zone of the dentate gyrus is a subregion of the hippocampus that has two uniquely defining features; it is one of the most active sites of adult neurogenesis as well as the location where the highest concentrations of synaptic zinc are found, the mossy fiber terminals. Therefore, we sought to investigate the idea that vesicular zinc plays a role as a modulator of hippocampal adult neurogenesis. Here, we used ZnT3-/- mice, which are depleted of synaptic-vesicle zinc, to test the effect of targeted deletion of this transporter on adult neurogenesis. We found that this manipulation reduced progenitor cell turnover as well as led to a marked defect in the maturation of newborn cells that survive in the DG toward a neuronal phenotype. We also investigated the effects of zinc (ZnCl2 ), n-acetyl cysteine (NAC), and ZnCl2 plus 2NAC (ZN) supplement on adult hippocampal neurogenesis. Compared with ZnCl2 or NAC, administration of ZN resulted in an increase in proliferation of progenitor cells and neuroblast. ZN also rescued the ZnT3 loss-associated reduction of neurogenesis via elevation of insulin-like growth factor-1 and ERK/CREB activation. Together, these findings reveal that ZnT3 plays a highly important role in maintaining adult hippocampal neurogenesis and supplementation by ZN has a beneficial effect on hippocampal neurogenesis, as well as providing a therapeutic target for enhanced neuroprotection and repair after injury as demonstrated by its ability to prevent aging-dependent cognitive decline in ZnT3-/- mice. Therefore, the present study suggests that ZnT3 and vesicular zinc are essential for adult hippocampal neurogenesis.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Acetilcisteína/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Cloruros/farmacología , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Compuestos de Zinc/farmacología
5.
Int J Mol Sci ; 19(5)2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29747437

RESUMEN

Global cerebral ischemia (GCI) is one of the main causes of hippocampal neuronal death. Ischemic damage can be rescued by early blood reperfusion. However, under some circumstances reperfusion itself can trigger a cell death process that is initiated by the reintroduction of blood, followed by the production of superoxide, a blood⁻brain barrier (BBB) disruption and microglial activation. Protocatechuic acid (PCA) is a major metabolite of the antioxidant polyphenols, which have been discovered in green tea. PCA has been shown to have antioxidant effects on healthy cells and anti-proliferative effects on tumor cells. To test whether PCA can prevent ischemia-induced hippocampal neuronal death, rats were injected with PCA (30 mg/kg/day) per oral (p.o) for one week after global ischemia. To evaluate degenerating neurons, oxidative stress, microglial activation and BBB disruption, we performed Fluoro-Jade B (FJB), 4-hydroxynonenal (4HNE), CD11b, GFAP and IgG staining. In the present study, we found that PCA significantly decreased degenerating neuronal cell death, oxidative stress, microglial activation, astrocyte activation and BBB disruption compared with the vehicle-treated group after ischemia. In addition, an ischemia-induced reduction in glutathione (GSH) concentration in hippocampal neurons was recovered by PCA administration. Therefore, the administration of PCA may be further investigated as a promising tool for decreasing hippocampal neuronal death after global cerebral ischemia.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Hipocampo/patología , Hidroxibenzoatos/uso terapéutico , Neuronas/patología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/prevención & control , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Glutatión/metabolismo , Hidroxibenzoatos/farmacología , Inflamación/patología , Espacio Intracelular/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Zinc/metabolismo
6.
Sci Rep ; 7(1): 11667, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916767

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is increasingly recognized as a major unwanted side effect of an otherwise highly valuable life-saving technology. In part, this awareness is a result of increased cancer survival rates following chemotherapy. Altered hippocampal neurogenesis may play a role in mediating CICI. In particular, zinc could act as a key regulator of this process. To test this hypothesis, we administered paclitaxel (Px) to male C57BL/6 mice for set time periods and then evaluated the effects of Px treatment on hippocampal neurogenesis and vesicular zinc. We found that vesicular zinc levels and expression of zinc transporter 3 (ZnT3) were reduced in Px-treated mice, compared to vehicle-treated mice. Moreover, Px-treated mice demonstrated a significant decrease in the number of neuroblasts present. However, no difference in the number of progenitor cells were observed. In addition, zinc supplementation by treatment with ZnCl2 ameliorated the Px-induced decrease in hippocampal neurogenesis and cognitive impairment. These results suggest that via disruption of vesicular zinc stores in hippocampal mossy fiber terminals, chemotherapy may impinge upon one or more of the sequential stages involved in the maturation of new neurons derived via adult neurogenesis and thereby leads to the progressive cognitive decline associated with CICI.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Disfunción Cognitiva/inducido químicamente , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Paclitaxel/efectos adversos , Vesículas Sinápticas/química , Zinc/análisis , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Regulación hacia Abajo , Ratones Endogámicos C57BL , Paclitaxel/administración & dosificación
7.
Int J Mol Sci ; 18(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28045430

RESUMEN

The effects of zinc supplementation on hippocampal neurogenesis in diabetes mellitus have not been studied. Herein, we investigated the effects of zinc plus cyclo-(His-Pro) (ZC) on neurogenesis occurring in the subgranular zone of dentate gyrus after streptozotocin (STZ)-induced diabetes. ZC (27 mg/kg) was administered by gavage once daily for one or six weeks from the third day after the STZ injection, and histological evaluation was performed at 10 (early phase) or 45 (late phase) days after STZ injection. We found that the proliferation of progenitor cells in STZ-induced diabetic rats showed an increase in the early phase. Additionally, ZC treatment remarkably increased the number of neural progenitor cells (NPCs) and immature neurons in the early phase of STZ-induced diabetic rats. Furthermore, ZC treatment showed increased survival rate of newly generated cells but no difference in the level of neurogenesis in the late phase of STZ-induced diabetic rats. The present study demonstrates that zinc supplementation by ZC increases both NPCs proliferation and neuroblast production at the early phase of diabetes. Thus, this study suggests that zinc supplemented with a histidine/proline complex may have beneficial effects on neurogenesis in patients experiencing the early phase of Type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Dipéptidos/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Neurogénesis/efectos de los fármacos , Zinc/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Hipocampo/citología , Masculino , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Ratas Sprague-Dawley , Estreptozocina
8.
Neuroscience ; 339: 634-643, 2016 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-27773743

RESUMEN

Zinc is a central actor in regulating stem cell proliferation and neurogenesis in the adult brain. High levels of vesicular zinc are found in the presynaptic terminals. It has been demonstrated that high levels of vesicular zinc are localized in the presynaptic terminals of the granule cells of the dentate gyrus (DG) and that neurogenesis occurs in the subgranular zone (SGZ). Furthermore, zinc chelation reduces hippocampal neurogenesis in pathological conditions such as hypoglycemia, epilepsy and traumatic brain injury. Here we test the effects of zinc plus cyclo-(His-Pro) (CHP) treatment on neurogenesis in the adult SGZ. In order to increase brain zinc, Sprague-Dawley (SD) rats, aged 5weeks, were given zinc plus CHP (ZC, 27mg/kg) orally available once per day for 2weeks. BrdU was intraperitoneally injected 2 times per day for 4 consecutive days starting 1week after initial ZC treatment. Neurogenesis was analyzed by BrdU, Ki67 and doublecortin (DCX) immunostaining. The number of progenitor cells and immature neurons were significantly increased in the DG following 2weeks of ZC treatment. Hippocampal vesicular zinc content was evaluated with TSQ staining. Vesicular TSQ fluorescent intensity was seen to increase in the mossy fiber area at 2weeks after ZC treatment. The present study demonstrates that zinc supplementation by ZC treatment increases hippocampal neurogenesis and levels of vesicular zinc. These findings provide evidence in support of the essential role of zinc in modulating hippocampal neurogenesis.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Dipéptidos/farmacología , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Zinc/farmacología , Animales , Bromodesoxiuridina , Recuento de Células , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo/fisiología , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Masculino , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Neuronas/fisiología , Neuropéptidos/metabolismo , Ratas Sprague-Dawley , Zinc/metabolismo
9.
Int J Med Mushrooms ; 17(9): 879-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26756300

RESUMEN

This study investigated the potential neuroprotective effect of a mushroom extract from Phellinus igniarius (Piwep) after transient cerebral ischemia. Ph. Igniarius, which has a history of traditional medicinal use, contains immunomodulatory compounds that have been described to have effects on the human immune system. Using a model of transient cerebral ischemia induced by both common carotid artery occlusion and hypovolemia, a water-ethanol extract precipitate of Ph. Igniarius (Piwep) was delivered intraperitoneally immediately after the insult and was injected subsequently every other day for the experimental course. Neuronal death was examined by Fluoro-Jade B staining 1 week after the insult. Piwep injection lead to decreased hippocampal neuronal death, suppression of oxidative injury, activation of microglia, and disruption of the blood-brain barrier. We conclude that Piwep potently inhibits hippocampal neuronal death following ischemia and may have a high therapeutic potential for ameliorating stroke-induced neuron death in the clinical setting.


Asunto(s)
Basidiomycota , Productos Biológicos/uso terapéutico , Hipocampo/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hipocampo/patología , Ataque Isquémico Transitorio/patología , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Accidente Cerebrovascular/patología
10.
Biomed Res Int ; 2014: 218274, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592383

RESUMEN

The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35-55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α 4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.


Asunto(s)
Agaricales/química , Productos Biológicos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Linfocitos/patología , Médula Espinal/patología , Animales , Productos Biológicos/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Integrina alfa4/genética , Integrina alfa4/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , ARN Mensajero/genética , ARN Mensajero/metabolismo , Médula Espinal/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología
11.
J Cereb Blood Flow Metab ; 32(6): 1086-96, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22453629

RESUMEN

Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD(+)), resulting in energy failure. In this study, we investigate whether lactate administration in the absence of cytosolic NAD(+) affords neuroprotection against hypoglycemia-induced neuronal death. Intraperitoneal injection of sodium L-lactate corrected arterial blood pH and blood lactate concentration after hypoglycemia. Lactate administered without glucose was not sufficient to promote electroencephalogram recovery from an isoelectric state during hypoglycemia. However, supplementation of glucose with lactate reduced neuronal death by ∼80% in the hippocampus. Hypoglycemia-induced superoxide production and microglia activation was also substantially reduced by administration of lactate. Taken together, these results suggest an intriguing possibility: that increasing brain lactate following hypoglycemia offsets the decrease in NAD(+) due to overactivation of PARP-1 by acting as an alternative energy substrate that can effectively bypass glycolysis and be fed directly to the citric acid cycle to maintain cellular ATP levels.


Asunto(s)
Hipoglucemia/prevención & control , Ácido Láctico/farmacología , Neuronas/metabolismo , Enfermedad Aguda , Adenosina Trifosfato/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/fisiopatología , Electrocardiografía/métodos , Glucólisis/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Concentración de Iones de Hidrógeno , Hipoglucemia/metabolismo , Hipoglucemia/mortalidad , Hipoglucemia/fisiopatología , Masculino , NAD/metabolismo , Neuronas/patología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Cell Mol Neurobiol ; 31(7): 1079-88, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21604187

RESUMEN

Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. In this study, cognitive function and the related mechanism were examined in theanine-administered young rats. Newborn rats were fed theanine through dams, which were fed water containing 0.3% theanine, and then fed water containing 0.3% theanine after weaning. Theanine level in the brain was under the detectable limit 6 weeks after the start of theanine administration. Theanine administration did not influence locomotor activity in the open-field test. However, rearing behavior was significantly increased in theanine-administered rats, suggesting that exploratory activity is increased by theanine intake. Furthermore, object recognition memory was enhanced in theanine-administered rats. The increase in exploratory activity in the open-field test seems to be associated with the enhanced object recognition memory after theanine administration. On the other hand, long-term potentiation (LTP) induction at the perforant path-granule cell synapse was not changed by theanine administration. To check hippocampal neurogenesis, BrdU was injected into rats 3 weeks after the start of theanine administration, and brain-derived neurotropic factor (BDNF) level was significantly increased at this time. Theanine intake significantly increased the number of BrdU-, Ki67-, and DCX-labeled cells in the granule cell layer 6 weeks after the start of theanine administration. This study indicates that 0.3% theanine administration facilitates neurogenesis in the developing hippocampus followed by enhanced recognition memory. Theanine intake may be of benefit to the postnatal development of hippocampal function.


Asunto(s)
Glutamatos/farmacología , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Neurogénesis/efectos de los fármacos , Hojas de la Planta/química , Reconocimiento en Psicología/efectos de los fármacos , Té/química , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Proteína Doblecortina , Femenino , Hipocampo/efectos de los fármacos , Humanos , Aprendizaje/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Extractos Vegetales/química , Embarazo , Ratas , Reconocimiento en Psicología/fisiología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Té/anatomía & histología
13.
Glia ; 58(4): 446-57, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19795500

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) is a ubiquitous nuclear enzyme involved in genomic stability. Excessive oxidative DNA strand breaks lead to PARP-1-induced depletion of cellular NAD(+), glycolytic rate, ATP levels, and eventual cell death. Glutamate neurotransmission is tightly controlled by ATP-dependent astrocytic glutamate transporters, and thus we hypothesized that astrocytic PARP-1 activation by DNA damage leads to bioenergetic depletion and compromised glutamate uptake. PARP-1 activation by the DNA alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), caused a significant reduction of cultured cortical astrocyte survival (EC(50) = 78.2 +/- 2.7 microM). HPLC revealed MNNG-induced time-dependent reductions in NAD(+) (98%, 4 h), ATP (71%, 4 h), ADP (63%, 4 h), and AMP (66%, 4 h). The maximal [(3)H]glutamate uptake rate (V(max)) also declined in a manner that corresponded temporally with ATP depletion, falling from 19.3 +/- 2.8 in control cells to 2.1 +/- 0.8 nmol/min/mg protein 4 h post-MNNG. Both bioenergetic depletion and loss of glutamate uptake capacity were attenuated by genetic deletion of PARP-1, directly indicating PARP-1 involvement, and by adding exogenous NAD(+) (10 mM). In mixed neurons/astrocyte cultures, MNNG neurotoxicity was partially mediated by extracellular glutamate and was reduced by co-culture with PARP-1(-/-) astrocytes, suggesting that impairment of astrocytic glutamate uptake by PARP-1 can raise glutamate levels sufficiently to have receptor-mediated effects at neighboring neurons. Taken together, these experiments showed that PARP-1 activation leads to depletion of the total adenine nucleotide pool in astrocytes and severe reduction in neuroprotective glutamate uptake capacity.


Asunto(s)
Astrocitos/fisiología , Corteza Cerebral/fisiología , Ácido Glutámico/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Alquilantes/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Técnicas de Cocultivo , Metilnitronitrosoguanidina/farmacología , Ratones , Ratones Noqueados , NAD/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Factores de Tiempo
14.
J Cereb Blood Flow Metab ; 26(2): 161-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15988476

RESUMEN

Hypothermia reduces excitotoxic neuronal damage after seizures, cerebral ischemia and traumatic brain injury (TBI), while hyperthermia exacerbates damage from these insults. Presynaptic release of ionic zinc (Zn2+), translocation and accumulation of Zn2+ ions in postsynaptic neurons are important mechanisms of excitotoxic neuronal injury. We hypothesized that temperature-dependent modulation of excitotoxicity is mediated in part by temperature-dependent changes in the synaptic release and translocation of Zn2+. In the present studies, we used autometallographic (AMG) and fluorescent imaging of N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining to quantify the influence of temperature on translocation of Zn2+ into hippocampal neurons in adult rats after weight drop-induced TBI. The central finding was that TBI-induced Zn2+ translocation is strongly influenced by brain temperature. Vesicular Zn2+ release was detected by AMG staining 1 h after TBI. At 30 degrees C, hippocampus showed almost no evidence of vesicular Zn2+ release from presynaptic terminals; at 36.5 degrees C, the hippocampus showed around 20% to 30% presynaptic vesicular Zn2+ release; and at 39 degrees C vesicular Zn2+ release was significantly greater (40% to 60%) than at 36.5 degrees C. At 6 h after TBI, intracellular Zn2+ accumulation was detected by the TSQ staining method, which showed that Zn2+ translocation also paralleled the vesicular Zn2+ release. Neuronal injury, assessed by counting eosinophilic neurons, also paralleled the translocation of Zn2+, being minimal at 30 degrees C and maximal at 39 degrees C. We conclude that pathological Zn2+ translocation in brain after TBI is temperature-dependent and that hypothermic neuronal protection might be mediated in part by reduced Zn2+ translocation.


Asunto(s)
Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo , Hipertermia Inducida , Hipotermia Inducida , Neuronas/metabolismo , Zinc/metabolismo , Animales , Temperatura Corporal , Peso Corporal , Lesiones Encefálicas/patología , Lesiones Encefálicas/terapia , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Aumento de la Imagen/métodos , Transporte Iónico , Masculino , Microscopía de Polarización/métodos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/prevención & control , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Sensibilidad y Especificidad , Coloración y Etiquetado , Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA