Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
medRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38313266

RESUMEN

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

2.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609175

RESUMEN

The human metabolism constantly responds to stimuli such as food intake, fasting, exercise, and stress, triggering adaptive biochemical processes across multiple metabolic pathways. To understand the role of these processes and disruptions thereof in health and disease, detailed documentation of healthy metabolic responses is needed but still scarce on a time-resolved metabolome-wide level. Here, we present the HuMet Repository, a web-based resource for exploring dynamic metabolic responses to six physiological challenges (exercise, 36 h fasting, oral glucose and lipid loads, mixed meal, cold stress) in healthy subjects. For building this resource, we integrated existing and newly derived metabolomics data measured in blood, urine, and breath samples of 15 young healthy men at up to 56 time points during the six highly standardized challenge tests conducted over four days. The data comprise 1.1 million data points acquired on multiple platforms with temporal profiles of 2,656 metabolites from a broad range of biochemical pathways. By embedding the dataset into an interactive web application, we enable users to easily access, search, filter, analyze, and visualize the time-resolved metabolomic readouts and derived results. Users can put metabolites into their larger context by identifying metabolites with similar trajectories or by visualizing metabolites within holistic metabolic networks to pinpoint pathways of interest. In three showcases, we outline the value of the repository for gaining biological insights and generating hypotheses by analyzing the wash-out of dietary markers, the complementarity of metabolomics platforms in dynamic versus cross-sectional data, and similarities and differences in systemic metabolic responses across challenges. With its comprehensive collection of time-resolved metabolomics data, the HuMet Repository, freely accessible at https://humet.org/, is a reference for normal, healthy responses to metabolic challenges in young males. It will enable researchers with and without computational expertise, to flexibly query the data for their own research into the dynamics of human metabolism.

3.
J Int Soc Sports Nutr ; 15(1): 48, 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261929

RESUMEN

BACKGROUND: Supplements are widely used among elite athletes to maintain health and improve performance. Despite multiple studies investigating use of dietary supplements by athletes, a comprehensive profiling of serum supplement metabolites in elite athletes is still lacking. This study aims to analyze the presence of various xenobiotics in serum samples from elite athletes of different sports, focusing on metabolites that potentially originate from nutritional supplements. METHODS: Profiling of xenobiotics in serum samples from 478 elite athletes from different sports (football, athletics, cycling, rugby, swimming, boxing and rowing) was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was performed using orthogonal partial least squares discriminant analysis. Differences in metabolic levels among different sport groups were identified by univariate linear models. RESULTS: Out of the 102 detected xenobiotics, 21 were significantly different among sport groups including metabolites that potentially prolong exercise tolerance (caffeic acid), carry a nootropic effect (2-pyrrolidinone), exert a potent anti-oxidant effect (eugenol, ferulic acid 4 sulfate, thioproline, retinol), or originate from drugs for different types of injuries (ectoine, quinate). Using Gaussian graphical modelling, a metabolic network that links various sport group-associated xenobiotics was constructed to further understand their metabolic pathways. CONCLUSIONS: This pilot data provides evidence that athletes from different sports exhibit a distinct xenobiotic profile that may reflect their drug/supplement use, diet and exposure to various chemicals. Because of limitation in the study design, replication studies are warranted to confirm results in independent data sets, aiming ultimately for better assessment of dietary supplement use by athletes.


Asunto(s)
Suplementos Dietéticos , Metabolómica , Xenobióticos/sangre , Atletas , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Deportes , Espectrometría de Masas en Tándem
4.
Nat Commun ; 9(1): 3969, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266991

RESUMEN

The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in males and critical for male flower development in other monocots, were absent in females. A LOG-like gene appears translocated into the Y-linked region and is suggested to play a role in suppressing female flowers. Our data are consistent with a two-mutation model for the evolution of dioecy in Phoenix.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Óvulo Vegetal/genética , Phoeniceae/genética , Polen/genética , Genes de Plantas/genética , Genoma de Planta/genética , Modelos Genéticos , Mutación , Phoeniceae/clasificación , Especificidad de la Especie
5.
Sci Rep ; 7(1): 14111, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29074884

RESUMEN

Using oral contraceptives has been implicated in the aetiology of stress-related disorders like depression. Here, we followed the hypothesis that oral contraceptives deregulate the HPA-axis by elevating circulating cortisol levels. We report for a sample of 233 pre-menopausal women increased circulating cortisol levels in those using oral contraceptives. For women taking oral contraceptives, we observed alterations in circulating phospholipid levels and elevated triglycerides and found evidence for increased glucocorticoid signalling as the transcript levels of the glucocorticoid-regulated genes DDIT4 and FKBP5 were increased in whole blood. The effects were statistically mediated by cortisol. The associations of oral contraceptives with higher FKBP5 mRNA and altered phospholipid levels were modified by rs1360780, a genetic variance implicated in psychiatric diseases. Accordingly, the methylation pattern of FKBP5 intron 7 was altered in women taking oral contraceptives depending on the rs1360780 genotype. Moreover, oral contraceptives modified the association of circulating cortisol with depressive symptoms, potentially explaining conflicting results in the literature. Finally, women taking oral contraceptives displayed smaller hippocampal volumes than non-using women. In conclusion, the integrative analyses of different types of physiological data provided converging evidence indicating that oral contraceptives may cause effects analogous to chronic psychological stressors regarding the regulation of the HPA axis.


Asunto(s)
Anticonceptivos Orales/efectos adversos , Hipotálamo/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Estrés Psicológico/inducido químicamente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Femenino , Humanos , Intrones/genética , Imagen por Resonancia Magnética , Persona de Mediana Edad , Tamaño de los Órganos/efectos de los fármacos , Fosfolípidos/sangre , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Triglicéridos/sangre , Adulto Joven
6.
NPJ Syst Biol Appl ; 3: 28, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28948040

RESUMEN

The identification of phenotype-driven network modules in complex, multifluid metabolomics data poses a considerable challenge for statistical analysis and result interpretation. This is the case for phenotypes with only few associations ('sparse' effects), but, in particular, for phenotypes with a large number of metabolite associations ('dense' effects). Herein, we postulate that examining the data at different layers of resolution, from metabolites to pathways, will facilitate the interpretation of modules for both the sparse and the dense cases. We propose an approach for the phenotype-driven identification of modules on multifluid networks based on untargeted metabolomics data of plasma, urine, and saliva samples from the German Study of Health in Pomerania (SHIP-TREND) study. We generated a hierarchical, multifluid map of metabolism covering both metabolite and pathway associations using Gaussian graphical models. First, this map facilitates a fundamental understanding of metabolism within and across fluids for our study, and can serve as a valuable and downloadable resource. Second, based on this map, we then present an algorithm to identify regulated modules that associate with factors such as gender and insulin-like growth factor I (IGF-I) as examples of traits with dense and sparse associations, respectively. We found IGF-I to associate at the rather fine-grained metabolite level, while gender shows well-interpretable associations at pathway level. Our results confirm that a holistic and interpretable view of metabolic changes associated with a phenotype can only be obtained if different layers of metabolic resolution from multiple body fluids are considered.

7.
Hum Mol Genet ; 25(24): 5472-5482, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27702941

RESUMEN

Caffeine is the most widely consumed psychoactive substance in the world and presents with wide interindividual variation in metabolism. This variation may modify potential adverse or beneficial effects of caffeine on health. We conducted a genome-wide association study (GWAS) of plasma caffeine, paraxanthine, theophylline, theobromine and paraxanthine/caffeine ratio among up to 9,876 individuals of European ancestry from six population-based studies. A single SNP at 6p23 (near CD83) and several SNPs at 7p21 (near AHR), 15q24 (near CYP1A2) and 19q13.2 (near CYP2A6) met GW-significance (P < 5 × 10-8) and were associated with one or more metabolites. Variants at 7p21 and 15q24 associated with higher plasma caffeine and lower plasma paraxanthine/caffeine (slow caffeine metabolism) were previously associated with lower coffee and caffeine consumption behavior in GWAS. Variants at 19q13.2 associated with higher plasma paraxanthine/caffeine (slow paraxanthine metabolism) were also associated with lower coffee consumption in the UK Biobank (n = 94 343, P < 1.0 × 10-6). Variants at 2p24 (in GCKR), 4q22 (in ABCG2) and 7q11.23 (near POR) that were previously associated with coffee consumption in GWAS were nominally associated with plasma caffeine or its metabolites. Taken together, we have identified genetic factors contributing to variation in caffeine metabolism and confirm an important modulating role of systemic caffeine levels in dietary caffeine consumption behavior. Moreover, candidate genes identified encode proteins with important clinical functions that extend beyond caffeine metabolism.


Asunto(s)
Antígenos CD/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cafeína/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2A6/genética , Inmunoglobulinas/genética , Glicoproteínas de Membrana/genética , Receptores de Hidrocarburo de Aril/genética , Cafeína/sangre , Café/genética , Café/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Teobromina/sangre , Teofilina/sangre , Población Blanca , Antígeno CD83
8.
J Am Soc Nephrol ; 27(4): 1175-88, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26449609

RESUMEN

Small molecules are extensively metabolized and cleared by the kidney. Changes in serum metabolite concentrations may result from impaired kidney function and can be used to estimate filtration (e.g., the established marker creatinine) or may precede and potentially contribute to CKD development. Here, we applied a nontargeted metabolomics approach using gas and liquid chromatography coupled to mass spectrometry to quantify 493 small molecules in human serum. The associations of these molecules with GFR estimated on the basis of creatinine (eGFRcr) and cystatin C levels were assessed in ≤1735 participants in the KORA F4 study, followed by replication in 1164 individuals in the TwinsUK registry. After correction for multiple testing, 54 replicated metabolites significantly associated with eGFRcr, and six of these showed pairwise correlation (r≥0.50) with established kidney function measures: C-mannosyltryptophan, pseudouridine, N-acetylalanine, erythronate, myo-inositol, and N-acetylcarnosine. Higher C-mannosyltryptophan, pseudouridine, and O-sulfo-L-tyrosine concentrations associated with incident CKD (eGFRcr <60 ml/min per 1.73 m(2)) in the KORA F4 study. In contrast with serum creatinine, C-mannosyltryptophan and pseudouridine concentrations showed little dependence on sex. Furthermore, correlation with measured GFR in 200 participants in the AASK study was 0.78 for both C-mannosyltryptophan and pseudouridine concentration, and highly significant associations of both metabolites with incident ESRD disappeared upon adjustment for measured GFR. Thus, these molecules may be alternative or complementary markers of kidney function. In conclusion, our study provides a comprehensive list of kidney function-associated metabolites and highlights potential novel filtration markers that may help to improve the estimation of GFR.


Asunto(s)
Metaboloma , Insuficiencia Renal Crónica/metabolismo , Estudios Transversales , Femenino , Estudio de Asociación del Genoma Completo , Tasa de Filtración Glomerular , Humanos , Masculino , Metaboloma/genética , Persona de Mediana Edad , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/fisiopatología
9.
Psychoneuroendocrinology ; 38(8): 1299-309, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23237813

RESUMEN

BACKGROUND: Individuals with negative affectivity who are inhibited in social situations are characterized as distressed, or Type D, and have an increased risk of cardiovascular disease (CVD). The underlying biomechanisms that link this psychological affect to a pathological state are not well understood. This study applied a metabolomic approach to explore biochemical pathways that may contribute to the Type D personality. METHODS: Type D personality was determined by the Type D Scale-14. Small molecule biochemicals were measured using two complementary mass-spectrometry based metabolomics platforms. Metabolic profiles of Type D and non-Type D participants within a population-based study in Southern Germany were compared in cross-sectional regression analyses. The PHQ-9 and GAD-7 instruments were also used to assess symptoms of depression and anxiety, respectively, within this metabolomic study. RESULTS: 668 metabolites were identified in the serum of 1502 participants (age 32-77); 386 of these individuals were classified as Type D. While demographic and biomedical characteristics were equally distributed between the groups, a higher level of depression and anxiety was observed in Type D individuals. Significantly lower levels of the tryptophan metabolite kynurenine were associated with Type D (p-value corrected for multiple testing=0.042), while no significant associations could be found for depression and anxiety. A Gaussian graphical model analysis enabled the identification of four potentially interesting metabolite networks that are enriched in metabolites (androsterone sulfate, tyrosine, indoxyl sulfate or caffeine) that associate nominally with Type D personality. CONCLUSIONS: This study identified novel biochemical pathways associated with Type D personality and demonstrates that the application of metabolomic approaches in population studies can reveal mechanisms that may contribute to psychological health and disease.


Asunto(s)
Inhibición Psicológica , Metabolómica , Personalidad Tipo D , Adulto , Anciano , Androsterona/análogos & derivados , Androsterona/sangre , Trastornos de Ansiedad/sangre , Cafeína/sangre , Estudios de Casos y Controles , Estudios Transversales , Depresión/sangre , Femenino , Humanos , Indicán/sangre , Quinurenina/sangre , Masculino , Persona de Mediana Edad , Factores de Riesgo , Transducción de Señal/fisiología , Tirosina/sangre
10.
J Biomol Screen ; 16(5): 467-75, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21543640

RESUMEN

The fatty acid binding protein 4 (FABP4) belongs to the family of lipid chaperones that control intracellular fluxes and compartmentalization of their respective ligands (e.g., fatty acids). FABP4, which is almost exclusively expressed in adipocytes and macrophages, contributes to the development of insulin resistance and atherosclerosis in mice. Lack of FABP4 protects against the development of insulin resistance associated with genetic or diet-induced obesity in mice. Furthermore, total or macrophage-specific FABP4 deficiency is protective against atherosclerosis in apolipoprotein E-deficient mice. The FABP4 small-molecule inhibitor BMS309403 has demonstrated efficacy in mouse models for type 2 diabetes mellitus and atherosclerosis, resembling phenotypes of mice with FABP4 deficiency. However, despite the therapeutically attractive long-term effects of FABP4 inhibition, an acute biomarker for drug action is lacking. The authors applied mass spectrometry lipidomics analysis to in vitro and in vivo (plasma and adipose tissue) samples upon inhibitor treatment. They report the identification of a potential biomarker for acute in vivo FABP4 inhibition that is applicable for further investigations and can be implemented in simple and fast-flow injection mass spectrometry assays. In addition, this approach can be considered a proof-of-principle study that can be applied to other lipid-pathway targeting mechanisms.


Asunto(s)
Biomarcadores/metabolismo , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Metabolismo de los Lípidos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Pirazoles/farmacología
11.
PLoS One ; 5(11): e13953, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21085649

RESUMEN

BACKGROUND: Metabolomics is the rapidly evolving field of the comprehensive measurement of ideally all endogenous metabolites in a biological fluid. However, no single analytic technique covers the entire spectrum of the human metabolome. Here we present results from a multiplatform study, in which we investigate what kind of results can presently be obtained in the field of diabetes research when combining metabolomics data collected on a complementary set of analytical platforms in the framework of an epidemiological study. METHODOLOGY/PRINCIPAL FINDINGS: 40 individuals with self-reported diabetes and 60 controls (male, over 54 years) were randomly selected from the participants of the population-based KORA (Cooperative Health Research in the Region of Augsburg) study, representing an extensively phenotyped sample of the general German population. Concentrations of over 420 unique small molecules were determined in overnight-fasting blood using three different techniques, covering nuclear magnetic resonance and tandem mass spectrometry. Known biomarkers of diabetes could be replicated by this multiple metabolomic platform approach, including sugar metabolites (1,5-anhydroglucoitol), ketone bodies (3-hydroxybutyrate), and branched chain amino acids. In some cases, diabetes-related medication can be detected (pioglitazone, salicylic acid). CONCLUSIONS/SIGNIFICANCE: Our study depicts the promising potential of metabolomics in diabetes research by identification of a series of known and also novel, deregulated metabolites that associate with diabetes. Key observations include perturbations of metabolic pathways linked to kidney dysfunction (3-indoxyl sulfate), lipid metabolism (glycerophospholipids, free fatty acids), and interaction with the gut microflora (bile acids). Our study suggests that metabolic markers hold the potential to detect diabetes-related complications already under sub-clinical conditions in the general population.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolómica/métodos , Anciano , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Ácido Araquidónico/metabolismo , Metabolismo de los Hidratos de Carbono , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Ácidos Grasos/metabolismo , Alemania/epidemiología , Glucosa/metabolismo , Humanos , Cuerpos Cetónicos/metabolismo , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular
12.
Mol Nutr Food Res ; 53(11): 1357-65, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19810022

RESUMEN

The effect of coffee consumption on human health is still discussed controversially. Here, we report results from a metabolomics study of coffee consumption, where we measured 363 metabolites in blood serum of 284 male participants of the Cooperative Health Research in the Region of Augsburg study population, aged between 55 and 79 years. A statistical analysis of the association of metabolite concentrations and the number of cups of coffee consumed per day showed that coffee intake is positively associated with two classes of sphingomyelins, one containing a hydroxy-group (SM(OH)) and the other having an additional carboxy-group (SM(OH,COOH)). In contrast, long- and medium-chain acylcarnitines were found to decrease with increasing coffee consumption. It is noteworthy that the concentration of total cholesterol also rises with an increased coffee intake in this study group. The association observed here between these hydroxylated and carboxylated sphingolipid species and coffee intake may be induced by changes in the cholesterol levels. Alternatively, these molecules may act as scavengers of oxidative species, which decrease with higher coffee intake. In summary, we demonstrate strong positive associations between coffee consumption and two classes of sphingomyelins and a negative association between coffee consumption and long- and medium-chain acylcarnitines.


Asunto(s)
Carnitina/análogos & derivados , Café , Metabolómica , Esfingomielinas/metabolismo , Anciano , Aterosclerosis/etiología , Carnitina/metabolismo , Colesterol/sangre , Humanos , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA