Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Rev Med Pharmacol Sci ; 24(9): 4697-4709, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32432733

RESUMEN

OBJECTIVE: Studies have demonstrated that long non-coding RNAs (lncRNAs) are important in the development and prognosis of prostate cancer. The aim of this study was to investigate the functions and mechanism of lnc-SNHG14 in prostate cancer. PATIENTS AND METHODS: Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) or Western blot (WB) were performed to detect mRNA expressions of SNHG14 and miR-5590-3p, and the protein levels of Yin Yang-1 (YY1) in prostate cancer tissues, adjacent tissues, and cancer cell lines. The correlation analysis was used to analyze the correlations between SNHG14, miR-5590-3p, and YY1. Kaplan-Meier survival analysis was used to analyze the overall survival for prostate cancer patients. Cell Counting Kit-8 (CCK-8) assay was performed to measure cell proliferation ability and flow cytometry assay was used to detect cell apoptotic rate. Besides, transwell assay was used to measure cell invasion ability. In addition, WB was performed to measure protein expressions in prostate cancer cell lines. Finally, Luciferase reporter assay was performed to verify the binding sites between SNHG14 and miR-5590-3p, miR-5590-3p, and YY1. RESULTS: The results showed that SNHG14 was significantly increased in prostate cancer tissues and prostate cancer cell lines, which were related with advanced stage and poor diagnosis for prostate cancer patients. MiR-5590-3p was reduced in prostate cancer tissues and cell lines, which were negatively correlated with SNHG14. YY1 was found to be increased in prostate cancer tissues, which was negatively correlated with miR-5590-3p and positively correlated with SNHG14. Furthermore, SNHG14 knockdown inhibited cell proliferation, invasion, and promoted cell apoptosis in DU145 cells. In addition, protein expressions of Cyclin D1, Bcl-2, and N-cadherin were repressed, and the levels of Bax, Cleaved Caspase-3, and E-cadherin were increased. Besides, miR-5590-3p inhibition promoted cell proliferation and invasion, and inhibited apoptosis in DU145 cells. Importantly, Luciferase reporter assay proved that SNHG14 could directly sponge with miR-5590-3p, which could bind with YY1 and regulate the functions of cancer cell. Finally, we proved that SNHG14 regulated cell proliferation, cell apoptosis, and invasion via miR-5590-3p/ YY1 axis in prostate cancer. CONCLUSIONS: Above all, we found that SNHG14 was increased in prostate cancer patients, which was related with future diagnosis for prostate cancer patients. Of note, we discovered that SNHG14 could promote cell proliferation, invasion, and repress cell apoptosis via miR-5590-3p/YY1 axis in prostate cancer, which might provide a new target for treating prostate cancer.


Asunto(s)
Movimiento Celular/fisiología , MicroARNs/metabolismo , Neoplasias de la Próstata/metabolismo , ARN Largo no Codificante/biosíntesis , Factor de Transcripción YY1/metabolismo , Anciano , Proliferación Celular , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/patología
2.
J Anim Sci ; 94(4): 1541-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27136013

RESUMEN

The objective of this study was to investigate the effects of L-glutamate (Glu) deficiency or L-trans pyrrolidine-2,4-dicarboxylic acid (PDC) supplementation on the proliferation of pig intestinal epithelial cells (IPEC-1). First, IPEC-1 cells were cultured in normal growing medium supplemented with 0 (Control), 50, 100, or 200 µmol/L PDC to determine an appropriate concentration of PDC supplementation. Second, IPEC-1 cells were cultured in Glu-deficient medium supplemented with 0 µmol/L Glu (Glu deficiency), 50 µmol/L Glu (Control), or 50 µmol/L Glu plus 100 µmol/L PDC (PDC supplementation). Cell proliferation ( = 24), cell cycle distribution ( = 6), cell apoptosis ( = 6), and expression levels of proteins of interest ( = 4) were determined by MTT assay, flow cytometry, or western blot. The results showed that cell proliferation was inhibited ( < 0.05) by 50, 100, and 200 µmol/L PDC supplementation at 24 and 48 h after treatment. Variance analysis was performed using the GLM procedure, and the results demonstrated that Glu deficiency or PDC supplementation led to the inhibition ( < 0.05) of cell proliferation, a greater ( < 0.05) percentage of cells in the G1 phase, and a lower ( < 0.05) percentage of cells in the S phase. Moreover, Glu deficiency or PDC supplementation reduced ( < 0.05) the expression levels of excitatory AA transporter 3 (EAAT3), phosphor-mammalian target of rapamycin (p-mTOR; Ser2448), p-ribosomal protein S6 kinase 1 (S6K1; Thr389), and p-S6 (Ser235/236). This study demonstrates that Glu deficiency or PDC supplementation inhibits proliferation of IPEC-1 cells via downregulation of the mTOR/S6K1 pathway and EAAT3 expression indicating that Glu deficiency may lead to the disturbances of intestinal epithelial renewal in pigs, particularly in neonates.


Asunto(s)
Proliferación Celular/fisiología , Células Epiteliales/efectos de los fármacos , Ácido Glutámico/deficiencia , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular , Proliferación Celular/efectos de los fármacos , Ácidos Dicarboxílicos/administración & dosificación , Ácidos Dicarboxílicos/farmacología , Regulación hacia Abajo , Células Epiteliales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ácido Glutámico/farmacología , Intestinos/efectos de los fármacos , Pirrolidinas/administración & dosificación , Pirrolidinas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
3.
Animal ; 8(10): 1677-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25231282

RESUMEN

Glutamate, which is one of the most important contributors to oxidative metabolism in the intestinal mucosa, is mainly transported by the excitatory amino acids transporters (EAATs) that are expressed in enterocytes. The objective of this study was to evaluate the effects of in ovo administration of l-trans pyrrolidine-2,4-dicarboxylic acid (l-trans-PDC), a potent competitive inhibitor of glutamate uptake by EAATs, on the growth of the small intestine in chicks. Two series of experiments were conducted with hatching eggs; 100 µl of various l-trans-PDC solutions (0, 0.075 or 0.225 mg/egg for the Control group, low-dose l-trans pyrrolidine 2,4-dicarboxylic acid group (L-PDC) or high-dose l-trans pyrrolidine 2,4-dicarboxylic acid group (H-PDC), respectively) was injected into the albumen sac of these hatching eggs before incubation. Hatchlings were sacrificed by cervical dislocation to determine the embryonic development in Experiment I, whereas the birds in Experiment II were raised or sampled at hatching, days 7 and 14 (D7 and D14) for further study. Gene expression in the small intestines was determined by real-time RT-PCR; and serum concentration of free amino acids was determined by an amino acid analyzer. The results showed that the hatchability was decreased by in ovo administration of l-trans-PDC. The small intestinal weights of the H-PDC group were decreased (P<0.05) at hatching and increased (P<0.05) on D7 and D14 compared with those in the Control group. In addition, the gene expression of EAAT2 in the completed or segmental small intestines was not changed (P>0.05); EAAT3 gene expression in the duodenum (P<0.05), jejunum (P=0.084) and ileum (P=0.060) on D14 was lower in the H-PDC group than in the Control group. Furthermore, the serum concentrations of free proline, threonine and phenylalanine but not glutamate or aspartate were increased (P<0.06) in H-PDC group. In conclusion, this paper is the first to report that in ovo administration of l-trans-PDC induces small intestinal growth retardation during the embryonic period and catch-up growth after hatching.


Asunto(s)
Embrión de Pollo/efectos de los fármacos , Pollos/crecimiento & desarrollo , Ácidos Dicarboxílicos/administración & dosificación , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Pirrolidinas/administración & dosificación , Animales , Peso Corporal , Embrión de Pollo/embriología , Embrión de Pollo/crecimiento & desarrollo , Pollos/genética , Pollos/metabolismo , Dieta/veterinaria , Intestino Delgado/efectos de los fármacos , Intestino Delgado/embriología , Intestino Delgado/crecimiento & desarrollo , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA