Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1288773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078108

RESUMEN

Iodine deficiency in the diet creates the need to search for innovative, more sustainable and more effective strategies for enriching food with this microelement. The adopted research hypothesis assumed that the use of organic forms of iodine for supplementation of lettuce (Lactuca sativa L.), compared to mineral iodine, has a more favorable effect not only on the concentration of iodine, but also on the yield and the content of other chemical components determining its nutritional and health-promoting value. Lettuce was planted in a nutrient film technique (NFT) hydroponic study in a greenhouse. The following application of iodine compounds (all in 5 µM molar mass equivalents) were tested in the studies: control (without of iodine application); potassium iodate (positive iodine control), 8-hydroxy-7-iodo-5-quinolinesulfonic acid, 5-chloro-7-iodo-8-quinolinol, 5,7-diiodo-8-quinolinol and 4-hydroxy-8-iodo-3-quinolinecarboxylic acid. In this work, it was shown for the first time that iodoquinolines can be 1) a source of iodine for plants; 2) they have a biostimulating effect on their yielding and 3) they increase the resistance of crops to stress (due to a significant increase in the level of polyphenolic compounds). Lettuce with the addition of 8-hydroxy-7-iodo-5-quinolinesulfonic acid was characterized by the highest content of iodine, which was 221.7 times higher than in control plants. The weight gain of the whole plant was particularly visible in the case of lettuce enriched with 5-chloro-7-iodo-8-quinolinol and amounted to 26.48% compared to the control. Lettuce biofortified with iodine in the form of iodoquinolines can successfully become part of a sustainable diet based on plant products, which has a low impact on the environment and contributes to the long-term good health of an individual or community. Reducing iodine deficiency through the use of organoiodine compounds can help achieve the sustainability goal of eliminating hidden hunger, improving nutritional status and promoting sustainable agriculture.

2.
Nutrients ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296971

RESUMEN

Considering the growing number of cancer cases around the world, natural products from the diet that exhibit potential antitumor properties are of interest. Our previous research demonstrated that fortification with iodine compounds is an effective way to improve the antioxidant potential of lettuce. The purpose of the present study was to evaluate the effect of iodine-biofortified lettuce on antitumor properties in human gastrointestinal cancer cell lines, gastric AGS and colon HT-29. Our results showed that extracts from iodine-biofortified lettuce reduce the viability and proliferation of gastric and colon cancer cells. The extracts mediated cell cycle arrest which was accompanied by inactivation of anti-apoptotic Bcl-2 and activation of caspases, as assessed by flow cytometry. However, extracts from lettuce fortified with organic forms of iodine acted more effectively than extracts from control and KIO3-enriched plants. Using quantitative PCR, we detected the increase in pro-apoptotic genes BAD, BAX and BID in AGS cells whereas up-regulation of cell cycle progression inhibitor CDKN2A and downregulation of pro-proliferative MDM2 in HT-29 cells. Interestingly, lettuce extracts led to down-regulation of pro-survival AKT1 and protooncogenic MDM2, which was consistent for extracts of lettuce fortified with organic form of iodine, 5-ISA, in both cell lines. MDM2 downregulation in HT-29 colon cancer cells was associated with RB1 upregulation upon 5-ISA-fortified lettuce extracts, which provides a link to the epigenetic regulation of tumor suppressor genes by RB/MDM2 pathway. Indeed, SEMA3A tumor suppressor gene was hypomethylated and upregulated in HT-29 cells treated with 5-ISA-fortified lettuce. Control lettuce exerted similar effects on RB/MDM2 pathway and SEMA3A epigenetic activation in HT-29 cells. Our findings suggest that lettuce as well as lettuce fortified with organic form of iodine, 5-ISA, may exert epigenetic anti-cancer effects that can be cancer type-specific.


Asunto(s)
Neoplasias del Colon , Neoplasias Gastrointestinales , Yodo , Lactuca , Extractos Vegetales , Humanos , Antioxidantes/farmacología , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Epigénesis Genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Yodo/farmacología , Lactuca/química , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Semaforina-3A/metabolismo , Alimentos Fortificados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA